(12)

United States Patent
Thantry et al.

US009152419B2

US 9,152,419 B2
Oct. 6, 2015

(10) Patent No.:
45) Date of Patent:

(54) INSTRUCTION SET FOR SUPPORTING WIDE (58) Field of Classification Search
SCALAR PATTERN MATCHES CPC ..o GOG6F 9/30145; GOGF 9/30032
. . See application file for complete search history.
(71) Applicants:Hariharan L. Thantry, Santa Clara, CA
Eggg, Mani Azimi, Menlo Park, CA (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Hariharan L. Thantry, Santa Clara, CA
(US); Mani Azimi, Menlo Park, CA 6,529,554 B1* 3/2003 Craver 375/240.23
(as) 2003/0041229 Al* 2/2003 Sandbotec.......... 712/223
(73) Assignee: Intel Corporation, Santa Clara, CA * cited by examiner
US
(US) Primary Examiner — Zachary K Huson
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agemt, or [Firm —Nicholson De Vos
patent is extended or adjusted under 35 Webster & Elliott LLP
U.S.C. 154(b) by 472 days.
57 ABSTRACT
(21) Appl. No.: 13/718,816 A processor includes an instruction decoder to receive an
- instruction having a first operand, a second operand, and a
(22) Filed: Dec. 18, 2012 third operand, and an execution unit coupled to the instruction
. S decoder to execute the instruction, the execution unit to indi-
(65) Prior Publication Data . - . .
vidually perform a shift operation by at least one bit for each
US 2014/0173255 Al Jun. 19, 2014 of a plurality of data elements stored in a storage location
indicated by the second operand, for each ofthe data elements
(51) Int.CL that has an overflow in response to the shift-left operation, to
GOGF 9/00 (2006.01) carry over the overflow into an adjacent data element based on
GOGF 9/30 (2006.01) a first bitmask obtained from the third operand, generating a
(52) US.CL final result, and to store the final result in a storage location
CPC ... GOG6F 9/30145 (2013.01); GO6F 9/30018 indicated by the first operand.
(2013.01); GOGF 9/30021 (2013.01); GO6F
9/30032 (2013.01); GO6F 9/30036 (2013.01) 24 Claims, 21 Drawing Sheets
100 Cache
107
A
Y
Instruction Instruction Rename/ Scheduler/ Wide Scalar Pattern Retirement
Fetch Unit »{ Decoder »| Allocator » Dispatcher > Match Unit > Unit
101 102 103 104 110 106
Execution Unit(s)
105
A
Y
Operands
109

Storage Resources
(e.g., registers, memory)
108

US 9,152,419 B2

Sheet 1 of 21

Oct. 6, 2015

U.S. Patent

801

(Alowaw ‘sioysibal < 6°9)
$92IN0s$9Y dbrIOIS

601
spueJsadp

901
nun
Juswisey

SOt

(s)un uonnosx3

orr
nun Yol

ulened Jejeas apipn

101
ayoen

I "OId
70l [201 101
Jayojedsiq [e—— JOEOO|Y [@—— Jsp00Ssq |e— 1un yoIe4
/la|npayos /aweusy uononJsuy| uonanysu|
00l

US 9,152,419 B2

Sheet 2 of 21

Oct. 6, 2015

U.S. Patent

00¢

¢ 9ld
001010LO LOLOLOLO 0LOLOLOL 00L0OLOLO
e 7 £¥e 7 @ Zve 7 R74 7
l 0 0 3
%N\ mmm @ Nmm EN\
00LOLOLO oorororo o_‘ororov 00L0OLOLO
wmw\ mmm @ &N\
I r o I
SN\ QN @ NK :N\
0L0LOLOL 0L0LOLOlL 0LOLOLOL 0LOLOLOL
Y02 7 €02 7 20z s 10T 7

LWNZ

(A

dN3l

LA

cNINZ

US 9,152,419 B2

Sheet 3 of 21

Oct. 6, 2015

U.S. Patent

00€

€ 9Old

v0€ \

‘puetado 1saiy Yy Aq pauioads uoneso| abelols e ul JNSal [eul 34} 91015

i

€0¢ \

‘1Insal jeull e Bunessuab ‘puelado yunoy syl Ag pauioads ysewlg e U paseq
(yusws|s e1Ep Joaddn ue Jo ST SUO 1SB3)|]B 0] JUSW|S BIBP JAMO| B WO gSIA suo
1se9| 18 “6-3) JudLIgd Blep Juddelpe ue 0] MOJLUAAO aY) JBAO ALed ‘uonelado Yo-uys
By} 01 anp (gSIA U0 1sed) 1k *6°8) MO|LUSAD UB SBY 1Y) SJUSLUS|S Blep 3} JO Yoes 40

i

c0€ \

"sjUsWIB|e elep sy 0} Buipuodss.ioo
S)Ig 9|dnNW sspNUI Ysewlig syl alaym ‘puelado puodas sy Ag palloads yseuniq
B UO Paseq 1] QU0 1Se9| 18 AQ 13| WIYS A[[enplAlpul ‘SJUBUIS|S BIEP 9U} JO LYIBd 404

i

L0C \

‘sjuswale ejep o|diinw Bulio)s uoieoo| ebelois e salyoads pueledo pay)
ay) alaym ‘spurltado yunoj pue ‘paiy) ‘puoass 1sul) B BUIABY UONINIISUI UB SAIS08Y

US 9,152,419 B2

Sheet 4 of 21

Oct. 6, 2015

U.S. Patent

00y

¥ Old
0L0L0L0OO0 LOLOLOLO 0L0LOLOL 0L0L0LOO
%% 7 Eh 7 q A 7 N4% 7
L o o L
45% 7 mmv q va (X587 7
0L0L0L0OO SSSS o_‘o::oo 0L0L0LOO
§¢\ mmv ﬁ N@ F@\
3 0 l l
$¢\ m? @ N; Sq\
LOLOLOLO LOLOLOLO LOLOLOLO LOLOLOLO
Y0¥ 7 oV 7 z0¥ 7 LoV 7

FNINZ

A

dANdl

I

¢NINZ

US 9,152,419 B2

Sheet 5 of 21

Oct. 6, 2015

U.S. Patent

009

G 'Old

¥0G \

‘pueltado 3841} oY) Ag paioads uoneoo| abe.o)s e Ul jnsal [eul 8y} 810)S

i

€0s \

|nsal
[euls e Bunessuab ‘puesado yunol ayy Ag paljioads ysewiiq e uo paseq (Juaws|o
BlEep Jamo| B JO gSIA 9UO }Ses| 18 0] Juswa|d ejep Joddn ue Jo ST duo jses) je

“6'9) JUBSWIDID BIEP 1UBIE[PE UB 0] MO|LISAO 3] JOA0 ALed ‘uonelsado 1ybu-yiys ay)

01 anp (gS7 duo 1ses| 18 "679) MOJLBA0 Ue SBY JBY] SJUSWS|o Blep SU JO Yors Jo4

i

¢0S \

"SjUBWSIS BIEP 9y} 0] Buipuodsaniod sHq
a|dijnw sapnjoul ysewliq sy alaym ‘puelado puodas syl Aq paioads ysewig e
U0 paseq 1ig duo 1sed| 18 AQ 1yBL 1IYS AjlenplAlpul ‘SJUBLUIS|S B1EP 9] JO UdB?d U104

i

_\om\

‘s)usWad B1ep a|dninw Buloys uoneoso| abeiols e salnads puriado pliy) sy}
2Joym ‘spuelado Uinoy pue ‘piy) ‘puosas ‘sl B BUIABY UORONISUL UB SAISISY

US 9,152,419 B2

Sheet 6 of 21

Oct. 6, 2015

V9 'Old

{D8A Ul uINjal
{(DOA Ul ‘D8A S| YSBW MOJLISAO ‘08A UNZEIds 10 YSew ZLSwuw = 99A Ul
/- 90B[d | +09A 1O} 37 By} Ul ||} MON ,/

{(JeA” MO|JJOAOSBWIZIUI ZLGUW = YSBW MO[LSA0
[« X9BQq }l pEO|3I ‘pUY ,/

(MSew” 0 g |[eAY)=, |BA” MO|LIBAO

L =>> |BA MO|LUOAO

‘(seun|ysewziul ZLgww = [eAY

{(SBW MO|LIBAO)JUIZYSBU ZLGULW = |[BA MO[LIBAO

(1 ‘00N Ul Hsewy ‘0aA ul)zelda s MSew ZLGww = 99A Ul
/SBW Uo paseq ‘| AQ J0109A ulew sy} YIys Mo\ ./
{(00A gsw “D9A Ul HYsewn)ysew zeide 1881 YSeW ZLGWW = YSBW MO|LBAO
Ix
Aijua | +10108A 8y} Jo uoisod g 8y ojul ¥oeq
HIUs Yo| Bulinp MOIHSAO [|IM Jeul G SN 84} 83ejol 0] ./
B 1eAy Nm:H
J[eA MOJJDAO ZEN
SEW MOJHSAO gL)Seww

U.S. Patent

}

(ysew 0 9Ln “ysewy gLySewwW ‘08A ullzLgw H)bjsdaizigw

US 9,152,419 B2

Sheet 7 of 21

Oct. 6, 2015

g9 9Old

{0BA Ul UINjal

{(0OA Ul '0BA gSW YSBW MOUBpUN ‘08A Ul)Zelde U0 jSew ZLGWW = D9A Ul
/« @2€|d |-09A 1O} GSIAl S} Ul ||} MON ./

(|leA mojuapun)sewZiul ZLGWW = 3Sew mopapun
/+ >0€q }l peojal ‘puy ,/

‘ISeW 09 |[BAY)=% [BA MO[Japun

[l =<< |[BA MOJapun

‘(fsEwy))seWzZIul ZLGWW = [BAY

((ysew mojuspunjiuizysew ZLGww = [eA MOjJapun

(1 “09A Ul Ysewy ‘DA ulzelda s ysew ZLGww = 08A Ul

[Seuny] uo paseq ‘| AQ JOJ09A uleul 8y} YIYs MON ,/

{(00A QS| ‘09N Ul HYsewysew geida 1S8) ySsew gL GWww =)MSew mopuspun
I«

Alus L-10108A 8y} Jo uonisod ggN |yl oul

Hys ybu Bulinp mojapun |Im Jey Jiq 957 843 8yejol o] ./

‘eny gen
|eA mojspun ggno
HSeW Mojuepun gLyseww

U.S. Patent

}

(sew 09N ‘ysewy gLyseww ‘OoA ullgzLsw)bbusdaizigw

US 9,152,419 B2

Sheet 8 of 21

Oct. 6, 2015

U.S. Patent

0€1¢ d1d14 3a02d0 V3 71z
@1314 NOILLYH3d0 3Svd

TATAEIE|
ONIGOONT
X1434d

JL 9 [ATATATALATATATA (] [[ww[wl [a]d] | 90
9Gie VSle 02l A1 AMAA - OFVIC Phic S0LZ X34
tg &g tg L7 $91Z Q1314 HLAIM
| ass [00 | [ala[ala] [wa | o3 | a[x[y INIW3T3 V1va 0r1z a3l
y1Z Q1313 X3AN 93151939 . VNHO4
g/ '9l4 G112 dYIN 3000dO0
p/1Z 07314 300040 TIN4
6212 Q1314
ONIGOINT
X1434d
6112 Ovz a13l4
tm . . . 0812 ._dvi . LlVAE04
v 98k OEN _o._m: 300040 V3N | 021z Q1314 AMA) 3000d0 01z X3y | m.v
- = I___| I_ ﬁU _ A y |
| sl .__%__ L aon ._>_>_>_>_>_>_>_> NARARR ARNRNE NN R
_ I |
2942 _ _ _
Q1314 INGSOVIdSId
89z 013
7512 oz | iz [evie p91z Q7314 M
| B |%se Wy | o3y Jaow| 25" N
€ 53 . t &9 I~ 2012 XI143¥d X3A -
JLA9 EIS 3LAS W/ QOW
V.9l

US 9,152,419 B2

Sheet 9 of 21

Oct. 6, 2015

U.S. Patent

V8Ol

_——— -

_ oz | | gzezz (. yhze vz \
lzszz a1aid|an3ia| SE |45 dSia) 99e | drecedidd | c8esee Loogrm) 8%CC | gi5)y | gign | Qree
aT3MH| NOILYININYW | vHOdIaL $S300V a13M
L e viva | ddsia f ™ L Vyarsiozy| 3sva 804
_ _ _ | _ 0gee
| | | _ | TVJOdWILNON
L L : SSIVOV AYOWIN
! oz | | grrg | f Y wee | e
lezee anaid|arad| Siqi [373°dsiq Seet | Bricedidd | azszz fveoze v SHCE | a13d | amEa | e |
| 3l viva | 3 asia_ P 7Y \ % ualsiozy| 3sve
—— _ddsia)™ " |]
_ | Sexe _ | 5222 TYMOdWaL dzzz
L NOILOIAZ X _ AHOWAN
! oz | B3 vzl Y voee | wee |z | gz |
lzszz 130 0134] pigin |— o] avozzanad [SYEEEM tvagze vl ss3oov| anEl | @ | e
|ALYIGINAIISYA | | NG Wa04SNvaL Viva |FOF IV sovio | xuonaw| x3ani IvoiLvedaol Ji3
L {Alemviva \ A AN NEITRE | TS |04
_ | _ _ “ §122 NOILYY3dO
. . ’ JdAL 10 'S§IDIV AHOWIN.ON
_ 7922 ggzz 4114 | 952¢ ()
| eze (S| amis NOILYHAO [A13A | | vzezz [vesee | qiordl, | Jee, | CErc, | oree
g13al4 H1AQIM f———] dNNOY ys Y a3
|2 VAN M " Viva 10MLNOY aNAoY | ASSYRLTONT fyalsio3y| 3svE 99
0Lze 2
| | eeez | | | "d0 3dAL TILND ONNOY ¢60&5
0022 LYIWHOS NOILONYLSNI _ | T1N4 'SSIOOV AJOWIN ON jyonan
ATANGRA HOLOFA DR¥INID ! ! _ _ _ ON
\I —— — — — I_ L | { |J
252z a1dl4 vvee (444
lzzzz a1aid|an3ia| S |3 dSia) 9%ee | vsez a1l viae [<grgw | 3| e | a3y | gran | O |
4 S5 ssyp| a1 a1aH
l AN viva '4'dSId ._ 0622 1314 NOILYH3dO NOILYINIWNDONY HALSIO3Y 3Svd _
—-—- 7 S) /'y

v4¢¢ dT1d14 340040 11N4

US 9,152,419 B2

Sheet 10 of 21

Oct. 6, 2015

U.S. Patent

[——— R 4 N
7922
0Lzz 292z 81522 phez Zvee
_N&N arad|a=E| S8 |4 .n_m_a_%m_m_ posce 131 gy (25522 O Bilasozz of SHCC | arEid | andy | e _
(FLYICINAIXSYIN NSNS T Veozz 10 HOLOIA |omaprSyn 3Ly SS9 | Rowam |, KT zo_wmwmuaozzmo&_
L viva | 4dsial . y —
_ I _ _ | me zzz
| | | _ | COWMDOVWAW SS3D0V
[I [[AHOWNIN
[| ! ! [[
. | |
a89i4 _ _ | | _ |
_ | | _ _
| I I | | [
[I I I _
| | I | |
7 oz | B% | _ (vorzz | vvez 2vee .
lzrzz @134 | a131| g b fFOTE I 2 f022e WBlacazz of ss30ov [ardld | ol | |
L |3 Vivg 321 N ON Jd3siozy| 3sva 04
_ _ 1122 d0 3dAL
_ I I I | I 3ZISA “O'W'M "0V "WIN ON
T T | B2 () (vorzz | iz e .
lzczz 131 | TEH | dram b i AL L 102620 OBlgagzz o) ss300 [a1aid | amam | HE |
|FLYITINNI| XSYIN| | NFNE 3 ALVAIdOL vLsee) OO SSV10 [AdONaW| X3aNI [NolLviado) 31313 |
L _|3lem viva | INd) L ON Judlsiomy| 3sve 404
™ N TS T Y
0022 LYWHOS NOILONYLSNI _ | 41314, _ _ _ SS300V
A10N3ld4 ¥OLDIA DI¥3NTO _ | H _ _ _ ASONIN
— — I 1 —
_ oze | | aeezz | “ g9ze
Z5ze a1aid vec (4444
lzizz @134 | a3 | Qi |4 .%_o_%.m_mm EZAUECRIE i Vi NUIEEN IO IR ETFIN ey Fa) |
|FLVIGINWI XSYIN | ININAT3 V2922 T png SSV1D wgiiaonl. X3 INOLLYN3dO| yiid 4
| ALEM viva '4°dSId 062¢ Q1314 NOILYH3dO NOILVININDNY _m_m_._.m_mum_m_ 3Svd |_
-—- 2~ ———) £

¥/¢Z 1314 3A02d0 11N4

US 9,152,419 B2

Sheet 11 of 21

Oct. 6, 2015

U.S. Patent

0£€Z 01314 30000 TY3Y 6267 a13l4
¢rec ONIGOON3
Q1314 NOILYS3dO 3SYE yj4351d
26 Ol
-—"
[ATATATALATATALA] [] [[w[w[w] [a]a] ~ feono
T =
AT CEHAN 9567 ez .
$922 Q7314 HLAIM
| sas [0 | [a[alala] [wa | o34 | [a] [ufa]x]y INIW313 v1va 0vzz 41314
N ZANEER € EESRER TVWHOd
g6 ‘914 G1£Z dVIN 3000dO0
p/gz @134 300040 TIN4
0067 W04 NOLLONMLSNI ATONSIYA ¥O103A DI4ID3dS
‘ N A9 d3ITdILTNA ST HOIHM ¢zez a13I4 K
¥0L0V4 INJWIOVidSIA FHL ATNO STTOH 0122 ANIGOINT
LN8 "N:8dSIa S¥ OL 33134 (L0=00W NIHM REETE Y1935
N.8dSIQ) 8292z 1314 HOLOV4 INFWIOVTdSIa OV ILINM 2522 s1ez Ovzz a1314
_ . 0cz QEIERAEY dyN goez . LYAHOS
NNHNN | omnmm o”vmm _ 01314 30Q0dO0 VI 0Z€Z aT131d AAAA _ 3A00d0 X3y | mb
- — I—_ ar ar _ A
T .__?._Ho._al_ro.___ ais | was aow =>_>_>_>_>_>_>_> AL AT]9 o] o][l al nlATATATATMA W] w]w]w] el x el z%o

7 A

TR) _
(0L=QOW NaHM zedsIa) | _
vz9¢z 01314 INFWIVdSIa
4

a3l <%mm L 01€Z X3
768 ovez | vrez |zvez| OMeC X3 922 47314 HLAIM
e | TEe % __ wy | o |dow| SSY10 ITENERERIR R
£ 59 1 0 & 59 L 2067 X1434d Xana — "
31A8 9IS 31A8 WY AOW

V6 'Ol

U.S. Patent

Oct. 6, 2015 Sheet 12 of 21 US 9,152,419 B2
CLASSFIELD ALPHAFIELD gETA FIELD 2254
208\ 290\
AUGMENTATION OPERATION FIELD 2250 UG EIE]
RS MODFELD 2342
FIELD 2252A Ta| B[B[6] R
RoUND 225241 | |] T FEDZA | | | |
1]r: Mll’o 0 S2|S1|SO
SAE FIELD I
T Een— It
U=0 ROUND CONTROL FIEND 2254A ! FIELD 22548
MOD FIELD 2342
(a6 #] 5] [20]or[otoR]10]
6 i
EVICTION = f oror s
ANTFELD [EHLsz[s1]s0]! S'BJ@)%_[)LDI
22528 %,_J ™
DATA MANIPULATION FIELD 2254C
TS MOD FIELD 2342 T
RL [11 RL
[Tl [BIFPh e,
WRITE L1 1 2257A | L1 1 2257A
MASK I‘1|r0 1 ROUND | LwlLo 0 VSIZE
CCI)ZII\IETL%OL —~—) 22571 | N 2057A2
2252C \E—l Ay, | VECTOR LENGTH FIELD
» MERGING FIELD 2259A !
MOD FIELD 2342
seronG—_| B[R] [2]oR[e]oR[ro]
2262A
S =T IISTATST
LifLs]B |1 SiB | D} D} DD
— L3 deon
PECTORAENGTH BROADCAST FIELD 22575

FIG. 9D

US 9,152,419 B2

Sheet 13 of 21

Oct. 6, 2015

U.S. Patent

2

0y

S1i9 #9
Sl Sie1siBay YSBN 1M

06¥¢ 3114 43181934

1V1d LNI d3axovd XN
w._._m_>w©

a3asvimv

ro J/

s1lg 08

(d428x)
ShPZ 3714 ¥ILSIDTY MOVLS d4 ¥VIVOS

Gepz siesibay asoding |eisusn)

wwz
Sllg 952
A N
ﬂmtm_ 4!
SLwwix ShwwA
Owiwix OWIWA] owwiz
L v)
sLgazls
0L+ Sia1816ay 01097
Slid 9 X 9l

00¥¢ JINLOTLIHOYVY J31S193d

0L 'Ol

US 9,152,419 B2

Sheet 14 of 21

Oct. 6, 2015

U.S. Patent

ST |, 16T
- LINN 1INN FHIYD V1va | 0262 LINN .
JHOVD 2152 AMOWIN g1l 'Ol
Al LINN 971 Y1YQ
& &
0967 (S)43LSNTI NOILND3X
962 205z
(S)LINN ()
SRER LINN
AHOWIN NOILND3X3
A A
———— _v__ __
[
I
8667 (S)LINN STT714 ¥ALSIOTY TWIISAHd [
|||||| C——— A _ 1 | Sz I
| 9562 (S)LINN ¥3TINAIHOS I _
|||||||||||| L LINN INFNZAIL
fm——— e ———— — —
Z6SZ LINN
| 0562 LINN
— — HOLYDOTIV/IWVNIY_ _ | 3INIONT NOILNDIXI
0862
0vSZ LINN 30023d LINA aNT LNOY4
)
[__8652 HOL134 NOLLONYISNI] ,/
A 0662 I¥OD
. 9862 LINN 91L NOILONYLSNI 2862 LINN
Vil Ol PL_ESZ LINN FHOVD NOILLONHLSNI NOLLOId34d HONVHH
| V252 [onmanyn| 3LEM 9162 aAvay A¥OWaW zisz 0157 | 80SC | 90SZ |\ anron
| LINWOD INOLLA30X3 AHOWAW | 39VLS ALNDTX3 /avay FINA3HOS [ONINYNIY O0TIV(3d093af ™, o\ =5
| [o vovd ALiEm yalsox | [[

204¢e
HOL34

0062 ANM3dId ~——

US 9,152,419 B2

Sheet 15 of 21

Oct. 6, 2015

U.S. Patent

a¢l 'Ol

v909¢

JHOVO V1va 11

gccoc veeoT
143IANOD 1H43ANOD
OId3aNNN OIdanNNN
A
v19¢
SH31S193d
= [OAROETAN
A
029¢ ¥29c
ANZZIMS 31vOI1d3d
82¢9¢

N1V JOLO3A 3AIM-91

A

9c9c

SHALSIOTY HSVYIN LM

V¢l 'Ol

AHOMLIN ONIY

c09¢

A

3
¢13Hl 40

092
HOVO
13S49NS TvOOT

A

909¢

JHOVO L1

¥19¢
SH3ALSIOTY
dO103A

Zloe
SH3LSIOTY
dvIvOosS

019¢
L1INN
HO103A

A

A

Y

809¢
1INN
Hv1vOos

/

34023a

009¢
NOILONYLSNI

US 9,152,419 B2

Sheet 16 of 21

Oct. 6, 2015

U.S. Patent

912z (S)LINN
¥ITTIOHINOD
sng

122 (S)LINN
¥ITTIOHINOD
AHOW3IW

0142 LINN
LIN3OV N3LSAS

d3LYAO3INI

i

¢l ol

9022 (S)LINN FHOVD AI™VHS

- 1

1

' nvoze || V0.2

L (s)unn | " cwa| |(S)LNN
_

| 3Hovo_ 3HOVO
V201 F0D

N¢0.¢ 3400

80.¢ 01901
3S0d4dnd
vI03dS

/ooR d0SS3004d

U.S. Patent Oct. 6, 2015 Sheet 17 of 21 US 9,152,419 B2

2815
2800 - — — 17
— 2810

| r — 1
r |:|_ PROCESSOR |7 — 7]
| — 2895 |
= / | _— 2840
o CONTROLLER
cO- I— —'_HLM82O_ - MEMORY
| PROCESSOR | | GMCH 2890 |-
I [
2860 —_ :
| _I
10 , 10H 2850 |
|
I |

FIG. 14

US 9,152,419 B2

Sheet 18 of 21

Oct. 6, 2015

U.S. Patent

Gl 9ld
vLvd
8262 0862
AaNv 3000 | s3amnaa | 3snow
JOVHOLS VIVA Le6e WINOD ccbe JQHYOaATN
h 0262 J ﬁ
G167 262 162 8162
¥0SS300Ud o/l olany $301A30 O/l 39014g SNg
al6 — ._ — — — _
986 —1 I | ze6z —1 | geez
9667 —| d-d 0662 L3SdIHD JES [_mowwmoo&oo_
7662 — S —
¥562 2562
-
9867 — 886 A \ \ L g6z
8167
0562
— 7862 et —z
NI NI
¥E62 2662
AMOWNAN AMOWAN
HOSSIV0H0D
/40SS3D0Hd HOSSI0Hd

/ 006¢

US 9,152,419 B2

Sheet 19 of 21

Oct. 6, 2015

U.S. Patent

vE6e
AHOW3N

ce6e
AHONIN

91 9Old
GL0S
O/l AD¥931
0662 9667 —1 4/l
13SdIHO
8667 —1 dd 66z —1 dd
vmoml\» « Nmmml\» «
—>
986¢ — 8967 A \ \ [9162
8/6¢
056¢
— T862 e —7
10 g%
¥0SSID0Ud H0SSID0Nd
—_— —
. 10¢ _
| s3oinzaon !

— — e—

/ 000¢

US 9,152,419 B2

Sheet 20 of 21

Oct. 6, 2015

U.S. Patent

0z1€ (S)40SS3D0Hd0D

Ll 9Ol
122 (S)LINN
orLe 0¢1€ Y¥3TI0HLNOD
LINN AV1dSIa ¢tie LINNvWa LINN VS AHOW3IN
EINAREI
912z (S)LINN
Y3TIOHLNOD
ang SRR 201€ (STIINN H_BzzoomEz_ —
| _
_ 9022 (S)LINN FHOVD AI™VHS _
P T T T~
T ¥h0Le
“ | (S)LINN | " (S)LINN
JHOY
042 LINN | Lo HOVO
INIOV WILSAS _ N20.Z 3H0D] v¢0.¢ 3400
01 1€ ¥Y0SSID0Hd NOILYOITddY

/ 004

dIHO ¥ NO W3LSAS

US 9,152,419 B2

Sheet 21 of 21

Oct. 6, 2015

U.S. Patent

8l Ol

¢02€ JOVNONYT13AITHOIH

80¢¢ "311dNOD
135 NOILONYLSNI
JAILYNHALTY

¥02€ ¥3dNOD 98X

90¢€ 300D AdVYNIF 98X

¢1¢€ ¥3143ANOD
NOILONYLSNI

012€ 3d0D AYVNIg
135 NOILONYLSNI
JAILYNHALTY

JdYML40S

TUVMANYH / «
Y
dhce 712 MO0 13S NOILONYLSNI
340D 13S NOILONYLSNI
S ING LSV 98X NV LNOHLIM HOSSI00¥d
1V HLIM HOSS300Yd

US 9,152,419 B2

1
INSTRUCTION SET FOR SUPPORTING WIDE
SCALAR PATTERN MATCHES

TECHNICAL FIELD

Embodiments of the present invention relate generally to
microprocessors. More particularly, embodiments of the
invention relate to an instruction set for supporting wide
scalar pattern matches.

BACKGROUND ART

String (pattern) match algorithms are widely used in the
areas of network intrusion detection, business analytics,
extensible markup language (XML) processing, search
engines, and in the frontend for compilers and interpreters.
These algorithms constitute large fractions of the total pro-
cessing times for representative benchmarks in the areas of
network intrusion detection (around 75%) and business ana-
Iytics (around 50%). Bit-parallel string match algorithms are
some of the most compute and storage efficient algorithms for
pattern matching.

One of the most popular pattern matching algorithms is the
backward non-deterministic (BNDM) algorithm. BNDM is a
bit-parallel pattern match algorithm that basically simulates a
backward NFA traversal within a shift window beginning
from the back of the pattern, for all transitions of the character
being examined. Since, it does a backward NFA traversal
(suffix) within the shift window, this algorithm terminates
earlier than a prefix approach, that simulates a forward NFA
traversal, which would have to examine every character in the
text. The NFA traversal is simulated using bit-masks per-
character, and since the bit-masks per character are operated
on in parallel if they fit within a computer register, this class
of algorithms is called “bit-parallel” string match.

All the bit-parallel pattern match algorithms are divided
into two stages. In the first stage (offline), a set of bit-masks
are constructed from the pattern to be searched for, and in the
second stage (online), these bitmasks are used for performing
searches on an arbitrarily long length text. The basic classi-
fication of bit-parallel algorithms are in terms of where the
search is begun (prefix or suffix), and the amount of window
that is shifted (pure suffix or factor). For the purposes of this
description, we assume that the length of the pattern being
searched for does not exceed the maximum scalar width of the
processor (i.e. processor word, currently 64), but this is not an
inherent limitation of the algorithm itself. Larger lengths than
64 can be simulated using a byte-array per-character. For
example, a 512 character pattern match can be simulated by
having a 64-byte array per character that holds the bitmask for
the character.

In a conventional system, these algorithms use byte arrays
in memory when the length exceeds the scalar register width.
Currently, there is no hardware that can efficiently provide
support for such an algorithm when the length exceeds the
scalar register width.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompanying
drawings in which like references indicate similar elements.

FIG. 1 is a block diagram of an execution pipeline of a
processor or processor core according to one embodiment of
the invention.

FIG. 2 is a diagram illustrating a process of a wide scalar
pattern matching operation according to one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a flow diagram illustrating a method for a wide
scalar pattern matching process according to one embodi-
ment.

FIG. 4 is a diagram illustrating a process of a wide scalar
pattern matching operation according to one embodiment.

FIG. 5 is a flow diagram illustrating a method for a wide
scalar pattern matching process according to one embodi-
ment.

FIGS. 6 A and 6B are pseudocode representing operations
of wide scalar pattern matching processes according to cer-
tain embodiments.

FIG. 7A illustrates an exemplary advanced vector exten-
sions (AVX) instruction format according to one embodiment
of the invention.

FIG. 7B illustrates an exemplary advanced vector exten-
sions (AVX) instruction format according to another embodi-
ment of the invention.

FIG. 7C illustrates an exemplary advanced vector exten-
sions (AVX) instruction format according to another embodi-
ment of the invention.

FIG. 8A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the invention.

FIG. 8B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the invention.

FIG. 9A is a block diagram illustrating an exemplary spe-
cific vector friendly instruction format according to one
embodiment of the invention.

FIG. 9B is a block diagram illustrating a generic vector
friendly instruction format according to another embodiment
of the invention.

FIG. 9C is a block diagram illustrating a generic vector
friendly instruction format according to another embodiment
of the invention.

FIG. 9D is a block diagram illustrating a generic vector
friendly instruction format according to another embodiment
of the invention.

FIG. 10 is a block diagram of register architecture accord-
ing to one embodiment of the invention.

FIG. 11 A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention.

FIG. 11B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention.

FIG. 12A is a block diagram of a processor core according
to one embodiment of the invention.

FIG. 12B is a block diagram of a processor core according
to another embodiment of the invention.

FIG. 13 is a block diagram of a processor according to
embodiments of the invention.

FIG. 14 is a block diagram of a system in accordance with
one embodiment of the invention.

FIG. 15 is a block diagram of a more specific exemplary
system in accordance with an embodiment of the invention.

FIG. 16 is a block diagram of a more specific exemplary
system in accordance with another embodiment of the inven-
tion.

FIG. 17 is a block diagram of a SoC in accordance with an
embodiment of the invention.

FIG. 18 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source

US 9,152,419 B2

3

instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DESCRIPTION OF THE EMBODIMENTS

Various embodiments and aspects of the inventions will be
described with reference to details discussed below, and the
accompanying drawings will illustrate the various embodi-
ments. The following description and drawings are illustra-
tive ofthe invention and are not to be construed as limiting the
invention. Numerous specific details are described to provide
a thorough understanding of various embodiments of the
present invention. However, in certain instances, well-known
or conventional details are not described in order to provide a
concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment.

According to some embodiments, the bit-parallel string
match algorithms for matching patterns are implemented
using single instruction multiple data (SIMD) (e.g., vector)
hardware when the pattern length exceeds the scalar width of
registers. Embodiments of the invention achieve bit-parallel
pattern match where the pattern length is limited only by the
SIMD width of the vector registers. An embodiment of the
invention extends this class of algorithms to support larger
length pattern matches in a bit-parallel fashion where the
length of the pattern being matched is limited by the SIMD
width of the hardware. The algorithms can be implemented
via an extension of instruction set architecture (ISA).

FIG. 1 is a block diagram of a processor or processor core
according to one embodiment of the invention. Referring to
FIG. 1, processor 100 may represent any kind of instruction
processing apparatuses or processing elements. A processing
element refers to a thread, a process, a context, a logical
processor, a hardware thread, a core, and/or any processing
element, which shares access to other shared resources of the
processor, such as reservation units, execution units, pipe-
lines, and higher level caches/memory. A physical processor
typically refers to an integrated circuit, which potentially
includes any number of other processing elements, such as
cores or hardware threads. A core often refers to logic located
on an integrated circuit capable of maintaining an indepen-
dent architectural state, where each independently main-
tained architectural state is associated with at least some
dedicated execution resources. In one embodiment, processor
100 may be a general-purpose processor. Processor 100 may
be any of various complex instruction set computing (CISC)
processors, various reduced instruction set computing
(RISC) processors, various very long instruction word
(VLIW) processors, various hybrids thereof, or other types of
processors entirely. Processor 100 may also represent one or
more processor cores.

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a central processing unit (CPU)
including one or more general purpose in-order cores

10

15

20

25

30

35

40

45

50

55

60

65

4

intended for general-purpose computing and/or one or more
general purpose out-of-order cores intended for general-pur-
pose computing; and 2) a coprocessor including one or more
special purpose cores intended primarily for graphics and/or
scientific (throughput). Such different processors lead to dif-
ferent computer system architectures, which may include: 1)
the coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special pur-
pose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

In one embodiment, processor 100 includes, but is not
limited to, instruction fetch unit 101, instruction decoder 102,
rename/allocator 103, scheduler/dispatcher 104, one or more
execution units 105, and retirement unit 106, forming a pro-
cessor pipeline. A pipeline or portion of a pipeline, such as a
front-end or instruction decode portion 102 of the pipeline,
can be shared by multiple threads. Architecture state registers
(not shown) are replicated, so individual architecture states/
contexts are capable of being stored for different logical pro-
cessors. Other smaller resources, such as instruction pointers
and renaming logic in rename allocator logic 103 may also be
replicated for the threads. Some resources, such as reorder
buffers in a reorder/retirement unit 106, load/store buffers,
and queues may be shared through partitioning. While
resources, such as general purpose internal registers (e.g.,
registers 108), page-table base registers, a low-level data-
cache (e.g., cache 107) and data translation buffer (TLB),
execution unit(s) 104, and an out-of-order unit (not shown)
may be potentially fully shared.

In one embodiment, instruction decoder 102 is to decode
the instructions received from instruction fetch unit 101. The
instructions may be macroinstructions fetched from cache
memory 107 that is integral within processor 100 or closely
associated therewith, or may be retrieved from an external
memory via a system bus. Instruction decoder 102 may
decode the macroinstructions and generate or output one or
more micro-operations, micro-code, entry points, microin-
structions, other instructions, or other control signals, which
reflect, or are derived from, the instructions. Instruction
decoder 102 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, microcode read only memories (ROMs),
look-up tables, hardware implementations, programmable
logic arrays (PLAs), and the like.

In one embodiment, allocator and rename unit 103 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, a thread is poten-
tially capable of an out-of-order execution, where allocator
and rename unit 103 also reserves other resources, such as
reorder buffers to track instruction results. It may also include
a register renamer to rename program/instruction reference
registers to other registers internal to the processor. During
such a renaming stage, references to external or logical reg-
isters are converted into internal or physical register refer-
ences to eliminate dependencies caused by register reuse.

Scheduler and dispatch unit 104 is to schedule and dispatch
instructions to execution units 105 for execution. In fact,
instructions/operations are potentially scheduled on execu-
tion units 105 according to their type availability. For

US 9,152,419 B2

5

example, a floating point instruction is scheduled on a port of
an execution unit that has an available floating point execu-
tion unit. Examples of execution units include a floating point
execution unit, an integer execution unit, a jump execution
unit, a load execution unit, a store execution unit, and other
known execution units.

Execution units 105, which may include an arithmetic
logic unit, or another type of logic unit capable of performing
operations based on instructions. As a result of instruction
decoder 102 decoding the instructions, execution unit 105
may receive one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which reflect, or are derived from, the instructions.
Execution unit 105 may be operable as a result of instructions
indicating one or more source operands (SRC) and to store a
result in one or more destination operands (DEST) of a reg-
ister set indicated by the instructions. Execution unit 105 may
include circuitry or other execution logic (e.g., software com-
bined with hardware and/or firmware) operable to execute
instructions or other control signals derived from the instruc-
tions and perform an operation accordingly. Execution unit
105 may represent any kinds of execution units such as logic
units, arithmetic logic units (ALUs), arithmetic units, integer
units, etc.

In one embodiment, reorder/retirement unit 105 includes
components, such as the reorder buffers mentioned above,
load buffers, and store buffers, to support out-of-order execu-
tion and later in-order retirement of instructions executed
out-of-order.

Some or all of the source and destination operands 109 may
be stored in storage resources 108 such as registers of a
register set or memory. A register set may be part of a register
file, along with potentially other registers, such as status
registers, flag registers, etc. A register may be a storage loca-
tion or device that may be used to store data. The register set
may often be physically located on die with the execution
unit(s). The registers may be visible from the outside of the
processor or from a programmer’s perspective. For example,
instructions may specify operands stored in the registers.
Various different types of registers are suitable, as long as
they are capable of storing and providing data as described
herein. The registers may or may not be renamed. Examples
of suitable registers include, but are not limited to, dedicated
physical registers, dynamically allocated physical registers
using register renaming, combinations of dedicated and
dynamically allocated physical registers, etc. Alternatively,
one or more of the source and destination operands may be
stored in a storage location other than a register, such as, for
example, a location in system memory.

In one embodiment, cache 107 includes a variety of cache
such as a high level and/or low level cache. Higher-level or
further-out cache is to cache recently fetched and/or operated
on elements. Note that higher-level or further-out refers to
cache levels increasing or getting further way from the execu-
tion unit(s). In one embodiment, the higher-level cache is a
second-level data cache. However, the higher level cache is
not so limited, as it may be or include an instruction cache,
which may also be referred to as a trace cache. A trace cache
may instead be coupled after a decoder to store recently
decoded instructions. It also potentially includes a branch
target buffer to predict branches to be executed or taken, and
an instruction-translation buffer (I-TLB) to store address
translation entries for instructions.

Lower level data cache and data translation buffer (D-TLB)
may be coupled to an execution unit(s). The data cache is to
store recently used/operated on elements, such as data oper-
ands, which are potentially held in memory coherency states,

10

15

20

25

30

35

40

45

50

55

60

65

6

such as modified, exclusive, shared, and invalid (MESI)
states. The D-TLB is to store recent virtual/linear to physical
address translations. Previously, a D-TLB entry includes a
virtual address, a physical address, and other information,
such as an offset, to provide inexpensive translations for
recently used virtual memory addresses.

Processor 100 further includes a bus interface unit (not
shown). A bus interface unit is to communicate with devices
external to a processor, such as system memory, a chipset, a
northbridge, or other integrated circuit. The memory may be
dedicated to the processor or shared with other devices in a
system. Examples of the memory includes dynamic random
access memory (DRAM), static RAM (SRAM), non-volatile
memory (NV memory), and long-term storage. Typically the
bus interface unit includes input/output (I/O) buffers to trans-
mit and receive bus signals on an interconnect. Examples of
the interconnect include a Gunning Transceiver Logic (GTL)
bus, a GTL+ bus, a double data rate (DDR) bus, a pumped bus,
a differential bus, a cache coherent bus, a point-to-point bus,
a multi-drop bus or other known interconnect implementing
any known bus protocol. The bus interface unit may also
communicate with a higher level cache.

In one embodiment, the various stages described above can
be organized into three phases. The first phase can be referred
to as an in-order front end including the fetch stage 101,
decode stage 102, allocate rename stage 103. During the
in-order front end phase, the instructions proceed through the
pipeline 100 in their original program order. The second
phase can be referred to as the out-of-order execution phase
including the schedule/dispatch stage 104 and the execute
stage 105. During this phase, each instruction may be sched-
uled, dispatched and executed as soon as its data dependen-
cies are resolved and the execution unit is available, regard-
less of its sequential position in the original program. The
third phase, referred to as the in-order retirement phase which
includes the retire stage 106 in which instructions are retired
in their original, sequential program order to preserve the
integrity and semantics of the program, and to provide a
precise interrupt model.

In one embodiment, execution unit 105 includes a wide
scalar pattern match unit 110, which may be implemented in
a form of microcode. Pattern match unit 110 is to perform at
least a portion of a wide scalar pattern match algorithm such
as the BNDM algorithm described above. In one embodi-
ment, pattern match unit 110 receives an instruction (e.g.,
SIMD instruction) having a first operand, a second operand, a
third operand, and a fourth operand. In response to the
instruction, pattern match unit 110 is to individually perform
a shift operation of one or more bits on each of data elements
retrieved from a storage location indicated by the third oper-
and. Each of the data elements is associated with a particular
vector lane. The shift operation can be a shift-left or shift-
right operation dependent upon the instruction such as an
opcode of the instruction.

In one embodiment, a shift operation is performed on a
particular data element based on a first bitmask specified by
the second operand. The first bitmask includes multiple bits
and each bit corresponds to one of the data elements (e.g.,
vector lane). If a bit of the first bitmask has a predetermined
bit value (e.g., logical one or TRUE), according to one
embodiment, the corresponding data element is shifted by at
least one bit; otherwise, the shift operation is not performed
on the associated data element. In addition, according to one
embodiment, for those data elements having an overflow due
to the shift operation, the overflow may be carried over to an
adjacent data element dependent upon bit values of a second
bitmask specified by the fourth operand. The second bitmask

US 9,152,419 B2

7

includes multiple bits and each bit corresponds to one of the
data elements (e.g., vector lane). Ifa bit of the second bitmask
has a predetermined bit value (e.g., logical one or TRUE), an
overflow of the corresponding data element is carried over to
an adjacent data element.

For example, if the shift operation is a shift-left operation
and if the corresponding bit of the second bitmask has a
predetermined bit value, at least one most significant bit
(MSB) of a first data element (e.g., a lower data element or
lower vector lane) is carried over to at least one least signifi-
cant bit (LSB) of an adjacent second data element (e.g., an
upper data element or upper vector lane). Similarly, ifthe shift
operation is a shift-right operation and if the corresponding
bit of the second bitmask has a predetermined bit value, at
least one LSB of a first data element (e.g., an upper data
element or upper vector lane) is carried over to at least one
MSB of an adjacent second data element (e.g., a lower data
element or lower vector lane).

According to one embodiment, an instruction is defined as
follows:

VPSLLQQ ZMM1, K1, ZMM2, K2
In this example, the opcode of VPSLLQQ indicates that the
instruction is to perform a shift-left operation on the data
elements obtained from the operands a first operand ZMM1,
a second operand K1, a third operand ZMM?2, and a fourth
operand K2. In this example, 512-bit registers such as ZMM
registers are utilized. A ZMM register, which has 512 bits,
may provide 16 vector lanes, each having 32 bits. Other
registers such as XMM (128-bit register) or YMM (256-bit
register) registers may also be applied herein. In one embodi-
ment, the first operand ZMM!1 is a destination operand and
the third operand ZMM2 is a source operand specifying a
storage location storing multiple data elements (e.g., vector
lanes). K1 and K2 specify a first bitmask for bit-shift opera-
tions and a second bitmask for overflow operations of the data
elements, respectively. K1 and K2 each includes a number of
bits (in this example, atleast 16 bits) and each bit corresponds
to one of the data elements specified by operands ZMM1 and
ZMM2. Note that throughout this application, for the purpose
of'illustration, a shift operation is performed to shift one bit of
a value indicated by the shift mask. However, the techniques
described herein can also be applied to shifting more than one
bit, for example, through an additional “count” extension in
the ISA for specifying the number of bits to be shifted.

This instruction achieves a left shift by one of the value
stored in ZMM?2, under bitmask K1. Upon completion of this
operation, the MSB of {lane-1} is shifted (overflowed) into
the LSB of {lane}, based upon the bit settings for bitmask K2.
Ifthe bit position for a particular lane in K2 is not set, then the
MSB bit for that lane is not overflowed. The “QQ” in the
encoding for the instruction indicates that the vector register
is treated as a wide scalar (quad-quad, or 512 bits) in this
example. Other opcodes may be used to indicate other scalar
widths. The result of this operation is stored in ZMM]1. The
operation is carried out based on the vector mask K1. Note
that K1 prevents bit-shift operation from occurring on a lane,
while K2 prevents the bit overtlow. K2 operand allows the
SIMD hardware to use one instruction to perform this opera-
tion for multiple patterns where the patterns are independent
of each other and the length for each pattern exceeds the
scalar width (32, in this case).

FIG. 2 is a diagram illustrating a process of a wide scalar
pattern matching operation according to one embodiment.
Process 200 may be performed by processor 100 of FIG. 1 and
represents operations of instruction VPSLLQQ according to
one embodiment. Referring to FIG. 2, in this example, there
are four data elements (4 vector lanes) and each data element

10

15

20

25

30

35

40

45

50

55

60

65

8

has eight bits. However, more or fewer data elements or
different sizes of the data elements may also be applied
herein. In this example, source operand ZMM?2 has four data
elements 201-204, each having a binary value of“10101010.”
Bitmask K1 has four bits 211-214, each corresponding to data
elements 201-204, where bit 211 has a logical value one; bit
212 has a logical value zero; bit 213 has a logical value one;
and bit 214 has a logical value one.

In response to the instruction, based on bitmask K1, since
bits 211 and 213-214 have logical value one, a shift-left
operation, in this example shifting by one bit, is individually
performed on data elements 201 and 203-204, generating
intermediate results 221-224. Note that since bit 212 has a
logical value zero, the shift-left operation is not performed on
data element 202 and it remains the same as data element 222.
As shown in FIG. 2, the shift-left operation causes overflows
in data elements 201 and 203-204 since their MSB bits have
a logical value one. The overflow may or may not be carried
over dependent upon bitmask K2.

In this example, K2 has four bits, where bits 231 and 234
have logical value one, while bits 232 and 233 have a logical
value zero. Thus, the overflows of data elements or vector
lanes 221 and 224 will be carried over to an adjacent data
element or vector lane. In particular, the MSB of data element
224 will be carried over to the LSB of data element 223. Since
data element 221 is the most significant data element, the
overflow will be ignored. The final result is shown in ZMM1
as the destination operand, where the L.SB of data element
243 becomes one due to the overflows. In one embodiment,
shift mask K1 supersedes overflow mask K2. That is, if a bit
of shift mask K1 is not set, the corresponding data element
remains unchanged, regardless the value of the corresponding
bit in overflow mask K2.

FIG. 3 is a flow diagram illustrating a method for a wide
scalar pattern matching process according to one embodi-
ment. Method 300 may be performed by processor 100 of
FIG. 1. Referring to FIG. 3, at block 301, processing logic
receives an instruction having a first, second, third, and fourth
operands, where the third operand specifies a storage location
storing multiple data elements in a vector fashion. Each of the
data elements represents a vector lane. At block 302, a shift-
left operation is individually performed on each of the data
elements based on a first bitmask specified by the second
operand. The first bitmask includes multiple bits each corre-
sponding to one of the data elements. At block 303, for each
of'the data elements that have an overflow due to the shift-left
operation, the overflow may be carried over to an adjacent
data element based on a second bitmask specified by the
fourth operand, generating a final result. A block 304, the final
result is then stored in a storage location indicated by the first
operand. FIG. 6A is pseudocode represents operations
involved in process 300 of FIG. 3.

According to another embodiment, an instruction is
defined as follows:

VPSRLQQ ZMM1, K1, ZMM2, K2
In this example, the opcode of VPSRLQQ indicates that the
instruction is to perform a shift-right operation on the data
elements obtained from the operands a first operand ZMM1,
a second operand K1, a third operand ZMM2, and a fourth
operand K2. In this example, 512-bit registers such as ZMM
registers are utilized. A ZMM register, which has 512 bits,
may provide 16 vector lanes, each having 32 bits. Other
registers such as XMM (128-bit register) or YMM (256-bit
register) registers may also be applied herein. In one embodi-
ment, the first operand ZMM1 is a destination operand and
the third operand ZMM2 is a source operand specifying a
storage location storing multiple data elements (e.g., vector

US 9,152,419 B2

9

lanes). K1 and K2 specify a first bitmask for bit-shift opera-
tions and a second bitmask for overflow operations of the data
elements, respectively. K1 and K2 each includes a number of
bits (in this example, atleast 16 bits) and each bit corresponds
to one of the data elements specified by operands ZMM1 and
ZMM2.

Instruction VPSRLQQ is similar to instruction VPSLLQQ
above, and is useful for bit-parallel algorithms that rely on
prefix match (i.e. matching the text starting from the begin-
ning of the pattern). This instruction would perform a right
shift by one ofthe value stored in ZMM?2, under mask K1. The
least significant bit (LSB) of {lane} is shifted (overflowed)
into the MSB of {lane~1}, based upon the bit settings for K2.
Ifthe bit position for a particular lane in K2 is not set, then the
LSB bit for that lane is not overflowed. The result of this
operation is stored in ZMM1. The operation is carried out
based on the vector mask K1. Note that K1 prevents bit-shift
operation from occurring on a lane, while K2 prevents the bit
overflow. K2 operand allows the hardware to use one instruc-
tion to perform this operation for multiple patterns where the
pattern length for each pattern exceeds the scalar width (32, in
this case).

FIG. 4 is a diagram illustrating a process of a wide scalar
pattern matching operation according to one embodiment.
Process 400 may be performed by processor 100 of FIG. 1 and
represents operations of instruction VPSRLQQ according to
one embodiment. Referring to FIG. 4, in this example, there
are four data elements (4 vector lanes) and each data element
has eight bits. However, more or fewer data elements or
different sizes of the data elements may also be applied
herein. In this example, source operand ZMM?2 has four data
elements 401-404, each having a binary value 0of“01010101.”
Bitmask K1 has at least four bits 411-414, each correspond-
ing to data elements 401-404, where bit 411 has a logical
value one; bit 412 has a logical value zero; bit 413 has a
logical value one; and bit 414 has a logical value one.

In response to the instruction, based on bitmask K1, since
bits 411 and 413-414 have logical value one, a shift-right
operation is individually performed on data elements 401 and
403-404, generating intermediate results 421-424. Note that
since bit 412 has a logical value zero, the shift-right operation
is not performed on data element 402 and it remains the same
as data element 422. As shown in FIG. 4, the shift-right
operation causes overflows in data elements 401 and 403-404
since their LSB bits have a logical value one. The overtlow
may or may not be carried over dependent upon bitmask K2.

In this example, K2 has four bits, where bits 431 and 434
have logical value one, while bits 432 and 433 have a logical
value zero. Thus, the overflows of data elements or vector
lanes 421 and 424 will be carried over to an adjacent data
element or vector lane. In particular, the LSB of data element
421 will be carried over to the MSB of data element 422.
Since data element 424 is the least significant data element,
the overflow will be ignored. The final result is shown in
ZMM1 as the destination operand, where the MSB of data
element 442 becomes one due to the overflows. In one
embodiment, shift mask K1 supersedes overflow mask K2.
That is, if a bit of shift mask K1 is not set, the corresponding
data element remains unchanged, regardless the value of the
corresponding bit in overflow mask K2.

FIG. 5 is a flow diagram illustrating a method for a wide
scalar pattern matching process according to one embodi-
ment. Method 500 may be performed by processor 100 of
FIG. 1. Referring to FIG. 5, at block 501, processing logic
receives an instruction having a first, second, third, and fourth
operands, where the third operand specifies a storage location
storing multiple data elements in a vector fashion. Each of the

20

40

45

60

10

data elements represents a vector lane. At block 502, a shift-
right operation is individually performed on each of the data
elements based on a first bitmask specified by the second
operand. The first bitmask includes multiple bits each corre-
sponding to one of the data elements. At block 503, for each
of'the data elements that have an overflow due to the shift-left
operation, the overflow may be carried over to an adjacent
data element based on a second bitmask specified by the
fourth operand, generating a final result. A block 504, the final
result is then stored in a storage location indicated by the first
operand. FIG. 6B is pseudocode represents operations
involved in process 500 of FIG. 5.

An instruction set, or instruction set architecture (ISA), is
the part of the computer architecture related to programming,
and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
(I/0). The term instruction generally refers herein to macro-
instructions—that is instructions that are provided to the pro-
cessor (or instruction converter that translates (e.g., using
static binary translation, dynamic binary translation includ-
ing dynamic compilation), morphs, emulates, or otherwise
converts an instruction to one or more other instructions to be
processed by the processor) for execution—as opposed to
micro-instructions or micro-operations (micro-ops)—that is
the result of a processor’s decoder decoding macro-instruc-
tions.

The ISA is distinguished from the microarchitecture,
which is the internal design of the processor implementing
the instruction set. Processors with different microarchitec-
tures can share acommon instruction set. For example, Intel®
Pentium 4 processors, Intel® Core™ processors, and proces-
sors from Advanced Micro Devices, Inc. of Sunnyvale Calif.
implement nearly identical versions of the x86 instruction set
(with some extensions that have been added with newer ver-
sions), but have different internal designs. For example, the
same register architecture of the ISA may be implemented in
different ways in different microarchitectures using well-
known techniques, including dedicated physical registers,
one or more dynamically allocated physical registers using a
register renaming mechanism (e.g., the use of a Register Alias
Table (RAT), a Reorder Buffer (ROB), and a retirement reg-
ister file; the use of multiple maps and a pool of registers), etc.
Unless otherwise specified, the phrases register architecture,
register file, and register are used herein to refer to that which
is visible to the software/programmer and the manner in
which instructions specify registers. Where a specificity is
desired, the adjective logical, architectural, or software vis-
ible will be used to indicate registers/files in the register
architecture, while different adjectives will be used to desig-
nation registers in a given microarchitecture (e.g., physical
register, reorder buffer, retirement register, register pool).

An instruction set includes one or more instruction for-
mats. A given instruction format defines various fields (num-
ber ofbits, location of bits) to specify, among other things, the
operation to be performed (opcode) and the operand(s) on
which that operation is to be performed. Some instruction
formats are further broken down though the definition of
instruction templates (or subformats). For example, the
instruction templates of a given instruction format may be
defined to have different subsets of the instruction format’s
fields (the included fields are typically in the same order, but
atleast some have different bit positions because there are less
fields included) and/or defined to have a given field inter-
preted differently. Thus, each instruction of an ISA is
expressed using a given instruction format (and, if defined, in
a given one of the instruction templates of that instruction

US 9,152,419 B2

11

format) and includes fields for specifying the operation and
the operands. For example, an exemplary ADD instruction
has a specific opcode and an instruction format that includes
an opcode field to specify that opcode and operand fields to
select operands (sourcel/destination and source2); and an
occurrence of this ADD instruction in an instruction stream
will have specific contents in the operand fields that select
specific operands.

Scientific, financial, auto-vectorized general purpose,
RMS (recognition, mining, and synthesis), and visual and
multimedia applications (e.g., 2D/3D graphics, image pro-
cessing, video compression/decompression, voice recogni-
tion algorithms and audio manipulation) often require the
same operation to be performed on a large number of data
items (referred to as “data parallelism”). Single Instruction
Multiple Data (SIMD) refers to a type of instruction that
causes a processor to perform an operation on multiple data
items. SIMD technology is especially suited to processors
that can logically divide the bits in a register into a number of
fixed-sized data elements, each of which represents a separate
value. For example, the bits in a 256-bit register may be
specified as a source operand to be operated on as four sepa-
rate 64-bit packed data elements (quad-word (Q) size data
elements), eight separate 32-bit packed data elements (double
word (D) size data elements), sixteen separate 16-bit packed
data elements (word (W) size data elements), or thirty-two
separate 8-bit data elements (byte (B) size data elements).
This type of data is referred to as packed data type or vector
data type, and operands of this data type are referred to as
packed data operands or vector operands. In other words, a
packed data item or vector refers to a sequence of packed data
elements, and a packed data operand or a vector operand is a
source or destination operand of a SIMD instruction (also
known as a packed data instruction or a vector instruction).

By way of example, one type of SIMD instruction specifies
a single vector operation to be performed on two source
vector operands in a vertical fashion to generate a destination
vector operand (also referred to as a result vector operand) of
the same size, with the same number of data elements, and in
the same data element order. The data elements in the source
vector operands are referred to as source data elements, while
the data elements in the destination vector operand are
referred to a destination or result data elements. These source
vector operands are of the same size and contain data ele-
ments of the same width, and thus they contain the same
number of data elements. The source data elements in the
same bit positions in the two source vector operands form
pairs of data elements (also referred to as corresponding data
elements; that is, the data element in data element position O
of each source operand correspond, the data element in data
element position 1 of each source operand correspond, and so
on). The operation specified by that SIMD instruction is per-
formed separately on each of these pairs of source data ele-
ments to generate a matching number of result data elements,
and thus each pair of source data elements has a correspond-
ing result data element. Since the operation is vertical and
since the result vector operand is the same size, has the same
number of data elements, and the result data elements are
stored in the same data element order as the source vector
operands, the result data elements are in the same bit positions
of the result vector operand as their corresponding pair of
source data elements in the source vector operands. In addi-
tion to this exemplary type of SIMD instruction, there are a
variety of other types of SIMD instructions (e.g., that has only
one or has more than two source vector operands, that operate
in a horizontal fashion, that generates a result vector operand
that is of a different size, that has a different size data ele-

20

12

ments, and/or that has a different data element order). It
should be understood that the term destination vector operand
(or destination operand) is defined as the direct result of
performing the operation specified by an instruction, includ-
ing the storage of that destination operand at a location (be it
aregister or at a memory address specified by that instruction)
so that it may be accessed as a source operand by another
instruction (by specification of that same location by the
another instruction).

The SIMD technology, such as that employed by the Intel®
Core™ processors having an instruction set including x86,
MMX™_ Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSE4.1, and SSE4.2 instructions, has enabled a significant
improvement in application performance. Anadditional set of
SIMD extensions, referred to the Advanced Vector Exten-
sions (AVX) (AVX1 and AVX2) and using the Vector Exten-
sions (VEX) coding scheme, has been, has been released
and/or published (e.g., see Intel® 64 and IA-32 Architectures
Software Developers Manual, October 2011; and see Intel®
Advanced Vector Extensions Programming Reference, June
2011).

Embodiments of the instruction(s) described herein may be
embodied in different formats. Additionally, exemplary sys-
tems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such
systems, architectures, and pipelines, but are not limited to
those detailed.

VEX encoding allows instructions to have more than two
operands, and allows SIMD vector registers to be longer than
128 bits. The use of a VEX prefix provides for three-operand
(or more) syntax. For example, previous two-operand instruc-
tions performed operations such as A=A+B, which over-
writes a source operand. The use of a VEX prefix enables
operands to perform nondestructive operations such as A=B+

35 C

40

45

50

55

60

65

FIG. 7A illustrates an exemplary AVX instruction format
including a VEX prefix 2102, real opcode field 2130, Mod
R/M byte 2140, SIB byte 2150, displacement field 2162, and
IMMS 2172. FIG. 7B illustrates which fields from FIG. 7A
make up a full opcode field 2174 and a base operation field
2142. FIG. 7C illustrates which fields from FIG. 7A make up
a register index field 2144.

VEX Prefix (Bytes 0-2) 2102 is encoded in a three-byte
form. The first byte is the Format Field 2140 (VEX Byte O,
bits [7:0]), which contains an explicit C4 byte value (the
unique value used for distinguishing the C4 instruction for-
mat). The second-third bytes (VEX Bytes 1-2) include a
number of bit fields providing specific capability. Specifi-
cally, REX field 2105 (VEX Byte 1, bits [7-5]) consists of a
VEXR bit field (VEX Byte 1, bit [7]-R), VEX.X bit field
(VEX byte 1, bit [6]-X), and VEX.B bit field (VEX byte 1,
bit[5]-B). Other fields of the instructions encode the lower
three bits of the register indexes as is known in the art (rrr, xxx,
and bbb), so that Rrrr, Xxxx, and Bbbb may be formed by
adding VEX R, VEX X, and VEX.B. Opcode map field 2115
(VEX byte 1, bits [4:0]-mmmmm) includes content to encode
an implied leading opcode byte. W Field 2164 (VEX byte 2,
bit [7]-W)—is represented by the notation VEX.W, and pro-
vides different functions depending on the instruction. The
role of VEX.vvvv 2120 (VEX Byte 2, bits [6:3]-vvvv) may
include the following: 1) VEX.vvvv encodes the first source
register operand, specified in inverted (1s complement) form
and is valid for instructions with 2 or more source operands;
2) VEX.vvvv encodes the destination register operand, speci-
fied in 1s complement form for certain vector shifts; or 3)
VEX.vvvv does not encode any operand, the field is reserved
and should contain 1111b. If VEX.I, 2168 Size field (VEX

US 9,152,419 B2

13
byte 2, bit [2]-L.)=0, it indicates 128 bit vector; if VEX.I.=1, it
indicates 256 bit vector. Prefix encoding field 2125 (VEX
byte 2, bits [1:0]-pp) provides additional bits for the base
operation field.

Real Opcode Field 2130 (Byte 3) is also known as the
opcode byte. Part of the opcode is specified in this field. MOD
R/M Field 2140 (Byte 4) includes MOD field 2142 (bits
[7-6]), Reg field 2144 (bits [5-3]), and R/M field 2146 (bits
[2-0]). The role of Reg field 2144 may include the following:
encoding either the destination register operand or a source
register operand (the rrr of Rrrr), or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 2146 may include the following: encod-
ing the instruction operand that references a memory address,
or encoding either the destination register operand or a source
register operand.

Scale, Index, Base (SIB)—The content of Scale field 2150
(Byte 5) includes SS 2152 (bits [7-6]), which is used for
memory address generation. The contents of SIB.xxx 2154
(bits [5-3]) and SIB.bbb 2156 (bits [2-0]) have been previ-
ously referred to with regard to the register indexes Xxxx and
Bbbb. The Displacement Field 2162 and the immediate field
(IMMS) 2172 contain address data.

A vector friendly instruction format is an instruction for-
mat that is suited for vector instructions (e.g., there are certain
fields specific to vector operations). While embodiments are
described in which both vector and scalar operations are
supported through the vector friendly instruction format,
alternative embodiments use only vector operations the vec-
tor friendly instruction format.

FIG. 8A, FIG. 8B, and FIG. 8C are block diagrams illus-
trating a generic vector friendly instruction format and
instruction templates thereof according to embodiments of
the invention. FIG. 8A is a block diagram illustrating a
generic vector friendly instruction format and class A instruc-
tion templates thereof according to embodiments of the
invention; while FIG. 8B is a block diagram illustrating the
generic vector friendly instruction format and class B instruc-
tion templates thereof according to embodiments of the
invention. Specifically, a generic vector friendly instruction
format 2200 for which are defined class A and class B instruc-
tion templates, both of which include no memory access 2205
instruction templates and memory access 2220 instruction
templates. The term generic in the context of the vector
friendly instruction format refers to the instruction format not
being tied to any specific instruction set.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64 bit (8 byte) data element widths (or sizes)
(and thus, a 64 byte vector consists of either 16 doubleword-
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte) or
8 bit (1 byte) data element widths (or sizes); a 32 byte vector
operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16
bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);
and a 16 byte vector operand length (or size) with 32 bit (4
byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data
element widths (or sizes); alternative embodiments may sup-
port more, less and/or different vector operand sizes (e.g., 256
byte vector operands) with more, less, or different data ele-
ment widths (e.g., 128 bit (16 byte) data element widths).

The class A instruction templates in FIG. 8A include: 1)
within the no memory access 2205 instruction templates there
is shown a no memory access, full round control type opera-
tion 2210 instruction template and a no memory access, data
transform type operation 2215 instruction template; and 2)

10

15

20

25

30

35

40

45

50

55

60

65

14

within the memory access 2220 instruction templates there is
shown a memory access, temporal 2225 instruction template
and a memory access, non-temporal 2230 instruction tem-
plate. The class B instruction templates in FIG. 8B include: 1)
within the no memory access 2205 instruction templates there
is shown a no memory access, write mask control, partial
round control type operation 2212 instruction template and a
no memory access, write mask control, vsize type operation
2217 instruction template; and 2) within the memory access
2220 instruction templates there is shown a memory access,
write mask control 2227 instruction template.

The generic vector friendly instruction format 2200
includes the following fields listed below in the order illus-
trated in FIG. 8A and FIG. 8B. Format field 2240—a specific
value (an instruction format identifier value) in this field
uniquely identifies the vector friendly instruction format, and
thus occurrences of instructions in the vector friendly instruc-
tion format in instruction streams. As such, this field is
optional in the sense that it is not needed for an instruction set
that has only the generic vector friendly instruction format.
Base operation field 2242—its content distinguishes different
base operations.

Register index field 2244—its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory. These
include a sufficient number of bits to select N registers from a
PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024) register file.
While in one embodiment N may be up to three sources and
one destination register, alternative embodiments may sup-
port more or less sources and destination registers (e.g., may
support up to two sources where one of these sources also acts
as the destination, may support up to three sources where one
of'these sources also acts as the destination, may support up to
two sources and one destination).

Modifier field 2246—its content distinguishes occurrences
of instructions in the generic vector instruction format that
specify memory access from those that do not; that is,
between no memory access 2205 instruction templates and
memory access 2220 instruction templates. Memory access
operations read and/or write to the memory hierarchy (in
some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations are
registers). While in one embodiment this field also selects
between three different ways to perform memory address
calculations, alternative embodiments may support more,
less, or different ways to perform memory address calcula-
tions.

Augmentation operation field 2250—its content distin-
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 2268, an alpha field 2252, and
a beta field 2254. The augmentation operation field 2250
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions. Scale field
2260—its content allows for the scaling of the index field’s
content for memory address generation (e.g., for address gen-
eration that uses 2°°***index+base).

Displacement Field 2262 A—its content is used as part of
memory address generation (e.g., for address generation that
uses 2°““**index+base+displacement). Displacement Factor
Field 2262B (note that the juxtaposition of displacement field
2262A directly over displacement factor field 2262B indi-
cates one or the other is used)—its content is used as part of
address generation; it specifies a displacement factor that is to
be scaled by the size of a memory access (N)—where N is the

US 9,152,419 B2

15

number of bytes in the memory access (e.g., for address
generation that uses 2°°***index+base+scaled displace-
ment). Redundant low-order bits are ignored and hence, the
displacement factor field’s content is multiplied by the
memory operands total size (N) in order to generate the final
displacement to be used in calculating an effective address.
The value of N is determined by the processor hardware at
runtime based on the full opcode field 2274 (described later
herein) and the data manipulation field 2254C. The displace-
ment field 2262A and the displacement factor field 2262B are
optional in the sense that they are not used for the no memory
access 2205 instruction templates and/or different embodi-
ments may implement only one or none of the two.

Data element width field 2264—its content distinguishes
which one of a number of data element widths is to be used (in
some embodiments for all instructions; in other embodiments
for only some of the instructions). This field is optional in the
sense that it is not needed if only one data element width is
supported and/or data element widths are supported using
some aspect of the opcodes.

Write mask field 2270—its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates support merging-writemasking, while class B
instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates dur-
ing the execution of any operation (specified by the base
operation and the augmentation operation); in other one
embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when zeroing vector masks allow any set of ele-
ments in the destination to be zeroed during the execution of
any operation (specified by the base operation and the aug-
mentation operation); in one embodiment, an element of the
destination is set to 0 when the corresponding mask bit has a
0 value. A subset of this functionality is the ability to control
the vector length of the operation being performed (that is, the
span of elements being modified, from the first to the last
one); however, it is not necessary that the elements that are
modified be consecutive. Thus, the write mask field 2270
allows for partial vector operations, including loads, stores,
arithmetic, logical, etc. While embodiments of the invention
are described in which the write mask field’s 2270 content
selects one of a number of write mask registers that contains
the write mask to be used (and thus the write mask field’s
2270 content indirectly identifies that masking to be per-
formed), alternative embodiments instead or additional allow
the mask write field’s 2270 content to directly specify the
masking to be performed.

Immediate field 2272—its content allows for the specifi-
cation of an immediate. This field is optional in the sense that
is it not present in an implementation of the generic vector
friendly format that does not support immediate and it is not
present in instructions that do not use an immediate. Class
field 2268—its content distinguishes between different
classes of instructions. With reference to FIG. 8A and FIG.
8B, the contents of this field select between class A and class
B instructions. In FIG. 8A and FIG. 8B, rounded corner
squares are used to indicate a specific value is present in a field
(e.g.,class A 2268A and class B 2268B for the class field 2268
respectively in FIG. 8A and FIG. 8B).

In the case of the non-memory access 2205 instruction
templates of class A, the alpha field 2252 is interpreted as an
RS field 2252 A, whose content distinguishes which one of the
different augmentation operation types are to be performed

20

40

45

16

(e.g., round 2252 A1 and data transform 2252A.2 are respec-
tively specified for the no memory access, round type opera-
tion 2210 and the no memory access, data transform type
operation 2215 instruction templates), while the beta field
2254 distinguishes which of the operations of the specified
type is to be performed. In the no memory access 2205
instruction templates, the scale field 2260, the displacement
field 2262 A, and the displacement scale filed 2262B are not
present.

In the no memory access full round control type operation
2210 instruction template, the beta field 2254 is interpreted as
a round control field 2254 A, whose content(s) provide static
rounding. While in the described embodiments of the inven-
tion the round control field 2254A includes a suppress all
floating point exceptions (SAE) field 2256 and a round opera-
tion control field 2258, alternative embodiments may support
may encode both these concepts into the same field or only
have one or the other of these concepts/fields (e.g., may have
only the round operation control field 2258).

SAE field 2256—its content distinguishes whether or not
to disable the exception event reporting; when the SAE field’s
2256 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception han-
dler.

Round operation control field 2258—its content distin-
guishes which one of a group of rounding operations to per-
form (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 2258 allows for the changing of the rounding mode on a
per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 2250
content overrides that register value.

In the no memory access data transform type operation
2215 instruction template, the beta field 2254 is interpreted as
a data transform field 2254B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

Inthe case of a memory access 2220 instruction template of
class A, the alpha field 2252 is interpreted as an eviction hint
field 2252B, whose content distinguishes which one of the
eviction hints is to be used (in FIG. 8 A, temporal 2252B.1 and
non-temporal 2252B.2 are respectively specified for the
memory access, temporal 2225 instruction template and the
memory access, non-temporal 2230 instruction template),
while the beta field 2254 is interpreted as a data manipulation
field 2254C, whose content distinguishes which one of a
number of data manipulation operations (also known as
primitives) is to be performed (e.g., no manipulation; broad-
cast; up conversion of a source; and down conversion of a
destination). The memory access 2220 instruction templates
include the scale field 2260, and optionally the displacement
field 2262A or the displacement scale field 2262B.

Vector memory instructions perform vector loads from and
vector stores to memory, with conversion support. As with
regular vector instructions, vector memory instructions trans-
fer data from/to memory in a data element-wise fashion, with
the elements that are actually transferred is dictated by the
contents of the vector mask that is selected as the write mask.

Temporal data is data likely to be reused soon enough to
benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely. Non-temporal data is data unlikely
to be reused soon enough to benefit from caching in the
1st-level cache and should be given priority for eviction. This

US 9,152,419 B2

17

is, however, a hint, and different processors may implement it
in different ways, including ignoring the hint entirely.

In the case of the instruction templates of class B, the alpha
field 2252 is interpreted as a write mask control (Z) field
2252C, whose content distinguishes whether the write mask-
ing controlled by the write mask field 2270 should be a
merging or a zeroing.

In the case of the non-memory access 2205 instruction
templates of class B, part of the beta field 2254 is interpreted
as an RL field 2257 A, whose content distinguishes which one
of the different augmentation operation types are to be per-
formed (e.g., round 2257A.1 and vector length (VSIZE)
2257 A 2 are respectively specified for the no memory access,
write mask control, partial round control type operation 2212
instruction template and the no memory access, write mask
control, VSIZE type operation 2217 instruction template),
while the rest of the beta field 2254 distinguishes which of the
operations of the specified type is to be performed. In the no
memory access 2205 instruction templates, the scale field
2260, the displacement field 2262A, and the displacement
scale filed 2262B are not present.

In the no memory access, write mask control, partial round
control type operation 2210 instruction template, the rest of
the beta field 2254 is interpreted as a round operation field
2259A and exception event reporting is disabled (a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception han-
dler).

Round operation control field 2259 A—just as round opera-
tion control field 2258, its content distinguishes which one of
a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest).
Thus, the round operation control field 2259 A allows for the
changing of the rounding mode on a per instruction basis. In
one embodiment of the invention where a processor includes
a control register for specifying rounding modes, the round
operation control field’s 2250 content overrides that register
value.

In the no memory access, write mask control, VSIZE type
operation 2217 instruction template, the rest of the beta field
2254 is interpreted as a vector length field 2259B, whose
content distinguishes which one of a number of data vector
lengths is to be performed on (e.g., 128, 256, or 512 byte).

Inthe case of amemory access 2220 instruction template of
class B, part of the beta field 2254 is interpreted as a broadcast
field 22578, whose content distinguishes whether or not the
broadcast type data manipulation operation is to be per-
formed, while the rest of the beta field 2254 is interpreted the
vector length field 2259B. The memory access 2220 instruc-
tion templates include the scale field 2260, and optionally the
displacement field 2262A or the displacement scale field
2262B.

With regard to the generic vector friendly instruction for-
mat 2200, a full opcode field 2274 is shown including the
format field 2240, the base operation field 2242, and the data
element width field 2264. While one embodiment is shown
where the full opcode field 2274 includes all of these fields,
the full opcode field 2274 includes less than all of these fields
in embodiments that do not support all of them. The full
opcode field 2274 provides the operation code (opcode).

The augmentation operation field 2250, the data element
width field 2264, and the write mask field 2270 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format. The combination
of write mask field and data element width field create typed
instructions in that they allow the mask to be applied based on
different data element widths.

20

30

40

45

18

The various instruction templates found within class A and
class B are beneficial in different situations. In some embodi-
ments of the invention, different processors or different cores
within a processor may support only class A, only class B, or
both classes. For instance, a high performance general pur-
pose out-of-order core intended for general-purpose comput-
ing may support only class B, a core intended primarily for
graphics and/or scientific (throughput) computing may sup-
port only class A, and a core intended for both may support
both (of course, a core that has some mix of templates and
instructions from both classes but not all templates and
instructions from both classes is within the purview of the
invention). Also, a single processor may include multiple
cores, all of which support the same class or in which different
cores support different class. For instance, in a processor with
separate graphics and general purpose cores, one of the
graphics cores intended primarily for graphics and/or scien-
tific computing may support only class A, while one or more
of the general purpose cores may be high performance gen-
eral purpose cores with out of order execution and register
renaming intended for general-purpose computing that sup-
port only class B. Another processor that does not have a
separate graphics core, may include one more general pur-
pose in-order or out-of-order cores that support both class A
and class B. Of course, features from one class may also be
implemented in the other class in different embodiments of
the invention. Programs written in a high level language
would be put (e.g., just in time compiled or statically com-
piled) into an variety of different executable forms, including:
1) a form having only instructions of the class(es) supported
by the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

FIG. 9 is ablock diagram illustrating an exemplary specific
vector friendly instruction format according to embodiments
of the invention. FIG. 9 shows a specific vector friendly
instruction format 2300 that is specific in the sense that it
specifies the location, size, interpretation, and order of the
fields, as well as values for some of those fields. The specific
vector friendly instruction format 2300 may be used to extend
the x86 instruction set, and thus some of the fields are similar
or the same as those used in the existing x86 instruction set
and extension thereof (e.g., AVX). This format remains con-
sistent with the prefix encoding field, real opcode byte field,
MOD RIM field, SIB field, displacement field, and immediate
fields of the existing x86 instruction set with extensions. The
fields from FIG. 8 into which the fields from FIG. 9 map are
illustrated.

It should be understood that, although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 2300 in the context of the generic
vector friendly instruction format 2200 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 2300 except where claimed. For
example, the generic vector friendly instruction format 2200
contemplates a variety of possible sizes for the various fields,
while the specific vector friendly instruction format 2300 is
shown as having fields of specific sizes. By way of specific
example, while the data element width field 2264 is illustrated
as a one bit field in the specific vector friendly instruction
format 2300, the invention is not so limited (that is, the
generic vector friendly instruction format 2200 contemplates
other sizes of the data element width field 2264).

US 9,152,419 B2

19

The generic vector friendly instruction format 2200
includes the following fields listed below in the order illus-
trated in FIG. 9A. EVEX Prefix (Bytes 0-3) 2302—is
encoded in a four-byte form. Format Field 2240 (EVEX Byte
0, bits [7:0])—the first byte (EVEX Byte 0) is the format field
2240 and it contains 0x62 (the unique value used for distin-
guishing the vector friendly instruction format in one
embodiment of the invention). The second-fourth bytes
(EVEX Bytes 1-3) include a number of bit fields providing
specific capability.

REX field 2305 (EVEX Byte 1, bits [7-5])—consists of a
EVEX R bitfield (EVEX Byte 1, bit [7]-R), EVEX.X bit field
(EVEX byte 1, bit [6]-X), and 2257BEX byte 1, bit[5]-B).
The EVEX.R, EVEX X, and EVEX.B bit fields provide the
same functionality as the corresponding VEX bit fields, and
are encoded using 1s complement form, ie. ZMMO is
encoded as 1111B, ZMM15 is encoded as 0000B. Other
fields of the instructions encode the lower three bits of the
register indexes as is known in the art (rrr, xxx, and bbb), so
that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEX R, EVEX X, and EVEX.B.

REX' field 2210—this is the first part of the REX' field
2210 and is the EVEX.R' bit field (EVEX Byte 1, bit [4]-R")
that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the invention,
this bit, along with others as indicated below, is stored in bit
inverted format to distinguish (in the well-known x86 32-bit
mode) from the BOUND instruction, whose real opcode byte
is 62, but does not accept in the MOD R/M field (described
below) the value of 11 in the MOD field; alternative embodi-
ments of the invention do not store this and the other indicated
bits below in the inverted format. A value of 1 is used to
encode the lower 16 registers. In other words, R'Rrrr is
formed by combining EVEX R', EVEX.R, and the other RRR
from other fields.

Opcode map field 2315 (EVEX byte 1, bits [3:0]—
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3). Data element width field 2264
(EVEX byte 2, bit [7]—W)—is represented by the notation
EVEX.W. EVEX.W is used to define the granularity (size) of
the datatype (either 32-bit data elements or 64-bit data ele-
ments). EVEX.vvvv 2320 (EVEX Byte 2, bits [6:3]-vvvv)—
the role of EVEX .vvvv may include the following: 1) EVEX-
-vvvy encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions
with 2 or more source operands; 2) EVEX.vvvv encodes the
destination register operand, specified in 1s complement form
for certain vector shifts; or 3) EVEX.vvvv does not encode
any operand, the field is reserved and should contain 1111b.
Thus, EVEX .vvvv field 2320 encodes the 4 low-order bits of
the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size to
32 registers. EVEX.0 2268 Class field (EVEX byte 2, bit
[2]-U)—If EVEX.0=0, it indicates class A or EVEX.UO; if
EVEX.0=1, it indicates class B or EVEX.U1.

Prefix encoding field 2325 (EVEX byte 2, bits [1:0]-pp)—
provides additional bits for the base operation field. In addi-
tion to providing support for the legacy SSE instructions in
the EVEX prefix format, this also has the benefit of compact-
ing the SIMD prefix (rather than requiring a byte to express
the SIMD prefix, the EVEX prefix requires only 2 bits). Inone
embodiment, to support legacy SSE instructions that use a
SIMD prefix (66H, F2H, F3H) in both the legacy format and
in the EVEX prefix format, these legacy SIMD prefixes are
encoded into the SIMD prefix encoding field; and at runtime
are expanded into the legacy SIMD prefix prior to being

10

30

35

40

45

20

provided to the decoder’s PLA (so the PLA can execute both
the legacy and EVEX format of these legacy instructions
without modification). Although newer instructions could use
the EVEX prefix encoding field’s content directly as an
opcode extension, certain embodiments expand in a similar
fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative
embodiment may redesign the PLA to support the 2 bit SIMD
prefix encodings, and thus not require the expansion.

Alpha field 2252 (EVEX byte 3, bit [7]-EH; also known as
EVEX.EH, EVEX.rs, EVEX RL, EVEX .write mask control,
and EVEX.N; also illustrated with a)—as previously
described, this field is context specific. Beta field 2254
(EVEX byte 3, bits [6:4]-SSS, also known as EVEXs, ,
EVEX.r, o, EVEX.rl, EVEX.LLO, EVEX.LLB; also illus-
trated with PP)—as previously described, this field is con-
text specific.

REX' field 2210—this is the remainder of the REX' field
and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V") that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, V'VVVV is formed by combining EVEX. V',
EVEX.vvvv.

Write mask field 2270 (EVEX byte 3, bits [2:0]-kkk)—its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 2330 (Byte 4) is also known as the
opcode byte. Part of the opcode is specified in this field. MOD
R/M Field 2340 (Byte 5) includes MOD field 2342, Reg field
2344, and R/M field 2346. As previously described, the MOD
field’s 2342 content distinguishes between memory access
and non-memory access operations. The role of Reg field
2344 can be summarized to two situations: encoding either
the destination register operand or a source register operand,
or be treated as an opcode extension and not used to encode
any instruction operand. The role of R/M field 2346 may
include the following: encoding the instruction operand that
references a memory address, or encoding either the destina-
tion register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6)—As previously
described, the scale field’s 2250 content is used for memory
address generation. SIB.xxx 2354 and SIB.bbb 2356—the
contents of these fields have been previously referred to with
regard to the register indexes Xxxx and Bbbb. Displacement
field 2262A (Bytes 7-10)—when MOD field 2342 contains
10, bytes 7-10 are the displacement field 2262A, and it works
the same as the legacy 32-bit displacement (disp32) and
works at byte granularity.

Displacement factor field 2262B (Byte 7)—when MOD
field 2342 contains 01, byte 7 is the displacement factor field
2262B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between —128 and 127 bytes offsets; in terms of
64 byte cache lines, disp8 uses 8 bits that can be set to only
four really useful values —128, —64, 0, and 64; since a greater
range is often needed, disp32 is used; however, disp32
requires 4 bytes. In contrast to disp8 and disp32, the displace-
ment factor field 2262B is a reinterpretation of disp8; when
using displacement factor field 2262B, the actual displace-
ment is determined by the content of the displacement factor
field multiplied by the size of the memory operand access (N).

US 9,152,419 B2

21

This type of displacement is referred to as disp8*N. This
reduces the average instruction length (a single byte of used
for the displacement but with a much greater range). Such
compressed displacement is based on the assumption that the
effective displacement is multiple of the granularity of the
memory access, and hence, the redundant low-order bits of
the address offset do not need to be encoded. In other words,
the displacement factor field 2262B substitutes the legacy x86
instruction set 8-bit displacement. Thus, the displacement
factor field 2262B is encoded the same way as an x86 instruc-
tion set 8-bit displacement (so no changes in the ModRM/SIB
encoding rules) with the only exception that disp8 is over-
loaded to disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs to
scale the displacement by the size of the memory operand to
obtain a byte-wise address offset). Immediate field 2272
operates as previously described.

FIG. 9B is a block diagram illustrating the fields of the
specific vector friendly instruction format 2300 that make up
the full opcode field 2274 according to one embodiment of the
invention. Specifically, the full opcode field 2274 includes the
format field 2240, the base operation field 2242, and the data
element width (W) field 2264. The base operation field 2242
includes the prefix encoding field 2325, the opcode map field
2315, and the real opcode field 2330.

FIG. 9C is a block diagram illustrating the fields of the
specific vector friendly instruction format 2300 that make up
the register index field 2244 according to one embodiment of
the invention. Specifically, the register index field 2244
includes the REX field 2305, the REX' field 2310, the
MODR/M.reg field 2344, the MODR/M.r/m field 2346, the
VVVV field 2320, xxx field 2354, and the bbb field 2356.

FIG. 9D is a block diagram illustrating the fields of the
specific vector friendly instruction format 2300 that make up
the augmentation operation field 2250 according to one
embodiment of the invention. When the class (U) field 2268
contains 0, it signifies EVEX.UO (class A 2268A); when it
contains 1, it signifies EVEX.U1 (class B 2268B). When U=0
and the MOD field 2342 contains 11 (signifying a no memory
access operation), the alpha field 2252 (EVEX byte 3, bit
[7]-EH) is interpreted as the rs field 2252 A. When the rs field
2252A contains a 1 (round 2252A.1), the beta field 2254
(EVEX byte 3, bits [6:4]-SSS) is interpreted as the round
control field 2254 A. The round control field 2254 A includes
a one bit SAE field 2256 and a two bit round operation field
2258. When the rs field 2252 A contains a 0 (data transform
2252A.2), the beta field 2254 (EVEX byte 3, bits [6:4]-SSS)
is interpreted as a three bit data transform field 2254B. When
U=0 and the MOD field 2342 contains 00, 01, or 10 (signi-
fying a memory access operation), the alpha field 2252
(EVEX byte 3, bit [7]-EH) is interpreted as the eviction hint
(EH) field 2252B and the beta field 2254 (EVEX byte 3, bits
[6:4]-SSS) is interpreted as a three bit data manipulation field
2254C.

When U=1, the alpha field 2252 (EVEX byte 3, bit[7]-EH)
is interpreted as the write mask control (7) field 2252C. When
U=1 and the MOD field 2342 contains 11 (signifying a no
memory access operation), part of the beta field 2254 (EVEX
byte 3, bit [4]-S,) is interpreted as the RL field 2257A; when
it contains a 1 (round 2257A.1) the rest of the beta field 2254
(EVEX byte 3, bit [6-5]-S,) is interpreted as the round
operation field 2259 A, while when the RL field 2257 A con-
tains a 0 (VSIZE 2257.A2) the rest of the beta field 2254
(EVEX byte 3, bit [6-5]-S,_,) is interpreted as the vector
length field 2259B (EVEX byte 3, bit [6-5]-L,). When U=1

40

45

22

and the MOD field 2342 contains 00, 01, or 10 (signifying a
memory access operation), the beta field 2254 (EVEX byte 3,
bits [6:4]-SSS) is interpreted as the vector length field 2259B
(EVEX byte 3, bit [6-5]-L,) and the broadcast field 2257B
(EVEX byte 3, bit [4]-B).

FIG. 10 is a block diagram of a register architecture 2400
according to one embodiment of the invention. In the embodi-
ment illustrated, there are 32 vector registers 2410 that are
512 bits wide; these registers are referenced as zmmO through
zmm31. The lower order 256 bits of the lower 16 zmm reg-
isters are overlaid on registers ymmO0-16. The lower order 128
bits of the lower 16 zmm registers (the lower order 128 bits of
the ymm registers) are overlaid on registers xmmO0-15. The
specific vector friendly instruction format 2300 operates on
these overlaid register file as illustrated in the below tables.

Adjustable

Vector Length Class Operations Registers

Instruction A (FIG. 8A; 2210, 2215, zmm registers

Templates that U=0) 2225,2230 (the vector

do not include length is 64 byte)

the vector length B (FIG. 8B; 2212 zmm registers

field 2259B U=1) (the vector
length is 64 byte)

Instruction B (FIG. 8B; 2217,2227 zmm, ymm, or

Templates that U=1) xXmm registers

do include the (the vector

vector length length is 64 byte,

field 2259B 32 byte, or 16
byte) depending
on the vector
length field
2259B

In other words, the vector length field 2259B sclects
between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 2259B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
2300 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

Write mask registers 2415—in the embodiment illustrated,
there are 8 write mask registers (kO through k7), each 64 bits
in size. In an alternate embodiment, the write mask registers
2415 are 16 bits in size. As previously described, in one
embodiment of the invention, the vector mask register kO
cannot be used as a write mask; when the encoding that would
normally indicate kO is used for a write mask, it selects a
hardwired write mask of OXFFFF, effectively disabling write
masking for that instruction.

General-purpose registers 2425—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX,RDX, RBP, RSI, RDI, RSP, and
R8 through R15.

Scalar floating point stack register file (x87 stack) 2445, on
which is aliased the MMX packed integer flat register file
2450—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87

US 9,152,419 B2

23

instruction set extension; while the MMX registers are used to
perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the
MMX and XMM registers.

Alternative embodiments of the invention may use wider or
narrower registers. Additionally, alternative embodiments of
the invention may use more, less, or different register files and
registers.

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

FIG. 11A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 11B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes illustrate
the in-order pipeline and in-order core, while the optional
addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core.
Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

In FIG. 11A, a processor pipeline 2500 includes a fetch
stage 2502, a length decode stage 2504, a decode stage 2506,
an allocation stage 2508, a renaming stage 2510, a scheduling
(also known as a dispatch or issue) stage 2512, a register
read/memory read stage 2514, an execute stage 2516, a write
back/memory write stage 2518, an exception handling stage
2522, and a commit stage 2524.

FIG. 11B shows processor core 2590 including a front end
unit 2530 coupled to an execution engine unit 2550, and both
are coupled to a memory unit 2570. The core 2590 may be a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruction
word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 2590 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

25

30

40

45

24

The front end unit 2530 includes a branch prediction unit
2532 coupled to an instruction cache unit 2534, which is
coupled to an instruction translation lookaside buffer (TLB)
2536, which is coupled to an instruction fetch unit 2538,
which is coupled to a decode unit 2540. The decode unit 2540
(or decoder) may decode instructions, and generate as an
output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode unit
2540 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only memo-
ries (ROMs), etc. In one embodiment, the core 2590 includes
a microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 2540 or other-
wise within the front end unit 2530). The decode unit 2540 is
coupled to a rename/allocator unit 2552 in the execution
engine unit 2550.

The execution engine unit 2550 includes the rename/allo-
cator unit 2552 coupled to a retirement unit 2554 and a set of
one or more scheduler unit(s) 2556. The scheduler unit(s)
2556 represents any number of different schedulers, includ-
ing reservations stations, central instruction window, etc. The
scheduler unit(s) 2556 is coupled to the physical register
file(s) unit(s) 2558. Each of the physical register file(s) units
2558 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc.

In one embodiment, the physical register file(s) unit 2558
comprises a vector registers unit, a write mask registers unit,
and a scalar registers unit. These register units may provide
architectural vector registers, vector mask registers, and gen-
eral purpose registers. The physical register file(s) unit(s)
2558 is overlapped by the retirement unit 2554 to illustrate
various ways in which register renaming and out-of-order
execution may be implemented (e.g., using a reorder bufter(s)
and a retirement register file(s); using a future file(s), ahistory
buffer(s), and a retirement register file(s); using a register
maps and a pool of registers; etc.). The retirement unit 2554
and the physical register file(s) unit(s) 2558 are coupled to the
execution cluster(s) 2560.

The execution cluster(s) 2560 includes a set of one or more
execution units 2562 and a set of one or more memory access
units 2564. The execution units 2562 may perform various
operations (e.g., shifts, addition, subtraction, multiplication)
and on various types of data (e.g., scalar floating point,
packed integer, packed floating point, vector integer, vector
floating point). While some embodiments may include a
number of execution units dedicated to specific functions or
sets of functions, other embodiments may include only one
execution unit or multiple execution units that all perform all
functions.

The scheduler unit(s) 2556, physical register file(s) unit(s)
2558, and execution cluster(s) 2560 are shown as being pos-
sibly plural because certain embodiments create separate
pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/packed
floating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own
scheduler unit, physical register file(s) unit, and/or execution
cluster—and in the case of a separate memory access pipe-
line, certain embodiments are implemented in which only the

US 9,152,419 B2

25

execution cluster of this pipeline has the memory access
unit(s) 2564). It should also be understood that where sepa-
rate pipelines are used, one or more of these pipelines may be
out-of-order issue/execution and the rest in-order.

The set of memory access units 2564 is coupled to the
memory unit 2570, which includes a data TLB unit 2572
coupled to a data cache unit 2574 coupled to a level 2 (L2)
cache unit 2576. In one exemplary embodiment, the memory
access units 2564 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 2572 in the memory unit 2570. The instruction cache unit
2534 is further coupled to a level 2 (I.2) cache unit 2576 in the
memory unit 2570. The L2 cache unit 2576 is coupled to one
or more other levels of cache and eventually to a main
memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 2500 as follows: 1) the instruction fetch 2538 per-
forms the fetch and length decoding stages 2502 and 2504; 2)
the decode unit 2540 performs the decode stage 2506; 3) the
rename/allocator unit 2552 performs the allocation stage
2508 and renaming stage 2510; 4) the scheduler unit(s) 2556
performs the schedule stage 2512; 5) the physical register
file(s) unit(s) 2558 and the memory unit 2570 perform the
register read/memory read stage 2514; the execution cluster
2560 perform the execute stage 2516; 6) the memory unit
2570 and the physical register file(s) unit(s) 2558 perform the
write back/memory write stage 2518; 7) various units may be
involved in the exception handling stage 2522; and 8) the
retirement unit 2554 and the physical register file(s) unit(s)
2558 perform the commit stage 2524.

The core 2590 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
2590 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1)
previously described), thereby allowing the operations used
by many multimedia applications to be performed using
packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 2534/2574 and a shared
L2 cache unit 2576, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

30

40

45

50

55

26

FIG.12A and FIG. 12B illustrate a block diagram of amore
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores of
the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function logic,
memory [/O interfaces, and other necessary 1/O logic,
depending on the application.

FIG. 12A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
2602 and with its local subset of the Level 2 (L2) cache 2604,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 2600 supports the x86 instruc-
tion set with a packed data instruction set extension. An L1
cache 2606 allows low-latency accesses to cache memory
into the scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 2608 and a vector unit 2610
use separate register sets (respectively, scalar registers 2612
and vector registers 2614) and data transferred between them
is written to memory and then read back in from alevel 1 (L1)
cache 2606, alternative embodiments of the invention may
use a different approach (e.g., use a single register set or
include a communication path that allow data to be trans-
ferred between the two register files without being written and
read back).

The local subset of the 1.2 cache 2604 is part of a global 1.2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the L2 cache 2604. Data read by a
processor core is stored in its [.2 cache subset 2604 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own .2 cache subset 2604 and
is flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 12B is an expanded view of part of the processor core
in FIG. 12 A according to embodiments of the invention. FIG.
12B includes an [.1 data cache 2606A part of the [.1 cache
2604, as well as more detail regarding the vector unit 2610
and the vector registers 2614. Specifically, the vector unit
2610 is a 16-wide vector processing unit (VPU) (see the
16-wide ALLU 2628), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 2620, numeric conversion with numeric convert
units 2622A-B, and replication with replication unit 2624 on
the memory input. Write mask registers 2626 allow predicat-
ing resulting vector writes.

FIG. 13 is a block diagram of a processor 2700 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
13 illustrate a processor 2700 with a single core 2702A, a
system agent 2710, a set of one or more bus controller units
2716, while the optional addition of the dashed lined boxes
illustrates an alternative processor 2700 with multiple cores
2702A-N, a set of one or more integrated memory controller
unit(s) 2714 in the system agent unit 2710, and special pur-
pose logic 2708.

Thus, different implementations of the processor 2700 may
include: 1) a CPU with the special purpose logic 2708 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
2702A-N being one or more general purpose cores (e.g.,

US 9,152,419 B2

27

general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 2702A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 2702A-N being a
large number of general purpose in-order cores. Thus, the
processor 2700 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 2700 may be a part of and/or may
be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
2706, and external memory (not shown) coupled to the set of
integrated memory controller units 2714. The set of shared
cache units 2706 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 2712 interconnects the integrated graphics logic 2708,
the set of shared cache units 2706, and the system agent unit
2710/integrated memory controller unit(s) 2714, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 2706 and
cores 2702-A-N.

In some embodiments, one or more of the cores 2702A-N
are capable of multithreading. The system agent 2710
includes those components coordinating and operating cores
2702A-N. The system agent unit 2710 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 2702A-N and the
integrated graphics logic 2708. The display unit is for driving
one or more externally connected displays.

The cores 2702 A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 2702A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.

FIG. 14 to FIG. 18 are block diagrams of exemplary com-
puter architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 14, shown is a block diagram of a
system 2800 in accordance with one embodiment of the
present invention. The system 2800 may include one or more
processors 2810, 2815, which are coupled to a controller hub
2820. In one embodiment the controller hub 2820 includes a
graphics memory controller hub (GMCH) 2890 and an Input/
Output Hub (IOH) 2850 (which may be on separate chips);
the GMCH 2890 includes memory and graphics controllers to
which are coupled memory 2840 and a coprocessor 2845; the

10

15

20

25

30

35

40

45

50

55

60

65

28
IOH 2850 is couples input/output (/O) devices 2860 to the
GMCH 2890. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 2840 and the coprocessor
2845 are coupled directly to the processor 2810, and the
controller hub 2820 in a single chip with the IOH 2850.

The optional nature of additional processors 2815 is
denoted in FIG. 14 with broken lines. Each processor 2810,
2815 may include one or more of the processing cores
described herein and may be some version of the processor
2700.

The memory 2840 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 2820 communicates with the processor(s)
2810, 2815 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 2895.

In one embodiment, the coprocessor 2845 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 2820
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 2810, 2815 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 2810 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 2810 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 2845. Accordingly, the processor
2810 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 2845. Coprocessor(s)
2845 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 15, shown is a block diagram of a
first more specific exemplary system 2900 in accordance with
anembodiment of the present invention. As shown in FIG. 15,
multiprocessor system 2900 is a point-to-point interconnect
system, and includes a first processor 2970 and a second
processor 2980 coupled via a point-to-point interconnect
2950. Each of processors 2970 and 2980 may be some version
of the processor 2700. In one embodiment of the invention,
processors 2970 and 2980 are respectively processors 2810
and 2815, while coprocessor 2938 is coprocessor 2845. In
another embodiment, processors 2970 and 2980 are respec-
tively processor 2810 coprocessor 2845.

Processors 2970 and 2980 are shown including integrated
memory controller (IMC) units 2972 and 2982, respectively.
Processor 2970 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 2976 and 2978; similarly, sec-
ond processor 2980 includes P-P interfaces 2986 and 2988.
Processors 2970, 2980 may exchange information via a point-
to-point (P-P) interface 2950 using P-P interface circuits
2978, 2988. As shown in FIG. 15, IMCs 2972 and 2982
couple the processors to respective memories, namely a
memory 2932 and a memory 2934, which may be portions of
main memory locally attached to the respective processors.

Processors 2970, 2980 may each exchange information
with a chipset 2990 via individual P-P interfaces 2952, 2954
using point to point interface circuits 2976, 2994, 2986, 2998.
Chipset 2990 may optionally exchange information with the
coprocessor 2938 via a high-performance interface 2939. In

US 9,152,419 B2

29

one embodiment, the coprocessor 2938 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.
Chipset 2990 may be coupled to a first bus 2916 via an
interface 2996. In one embodiment, first bus 2916 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 15, various /O devices 2914 may be
coupled to first bus 2916, along with a bus bridge 2918 which
couples first bus 2916 to a second bus 2920. In one embodi-
ment, one or more additional processor(s) 2915, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 2916. In
one embodiment, second bus 2920 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
2920 including, for example, a keyboard and/or mouse 2922,
communication devices 2927 and a storage unit 2928 such as
a disk drive or other mass storage device which may include
instructions/code and data 2930, in one embodiment. Further,
an audio I/0 2924 may be coupled to the second bus 2920.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of F1G. 15, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 16, shown is a block diagram of a
second more specific exemplary system 3000 in accordance
with an embodiment of the present invention. Like elements
in FIG. 16 and FIG. 17 bear like reference numerals, and
certain aspects of FIG. 15 have been omitted from FIG. 16 in
order to avoid obscuring other aspects of FIG. 16. FIG. 16
illustrates that the processors 2970, 2980 may include inte-
grated memory and I/O control logic (“CL”") 2972 and 2982,
respectively. Thus, the CL. 2972, 2982 include integrated
memory controller units and include I/O control logic. FIG.
16 illustrates that not only are the memories 2932, 2934
coupled to the CL 2972, 2982, but also that I/O devices 3014
are also coupled to the control logic 2972, 2982. [.egacy /O
devices 3015 are coupled to the chipset 2990.

Referring now to FIG. 17, shown is a block diagram of a
SoC 3100 in accordance with an embodiment of the present
invention. Similar elements in FIG. 13 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. InFIG. 17, an interconnect unit(s) 3102
is coupled to: an application processor 3110 which includes a
set of one or more cores 202A-N and shared cache unit(s)
2706; a system agent unit 2710; a bus controller unit(s) 2716;
an integrated memory controller unit(s) 2714; a set or one or
more coprocessors 3120 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
3130; adirect memory access (DMA) unit 3132; and a display
unit 3140 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 3120 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 2930 illustrated in FIG. 15,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

US 9,152,419 B2

31

FIG. 18 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 18 shows a program in
a high level language 3202 may be compiled using an x86
compiler 3204 to generate x86 binary code 3206 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 3216. The processor with at least one x86 instruc-
tion set core 3216 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 3204 represents a compiler that is operable to gen-
erate x86 binary code 3206 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 3216.
Similarly, FIG. 18 shows the program in the high level lan-
guage 3202 may be compiled using an alternative instruction
set compiler 3208 to generate alternative instruction set
binary code 3210 that may be natively executed by a proces-
sor without at least one x86 instruction set core 3214 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 3212 is used to convert the
x86 binary code 3206 into code that may be natively executed
by the processor without an x86 instruction set core 3214.
This converted code is not likely to be the same as the alter-
native instruction set binary code 3210 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 3212 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 3206.

According to one embodiment, a processor includes an
instruction decoder to receive an instruction having a first
operand, a second operand, and a third operand; and an execu-
tion unit coupled to the instruction decoder to execute the
instruction, the execution unit to individually perform a shift
operation by one bit for each of a plurality of data elements
stored in a storage location indicated by the second operand,
for each of the data elements that has an overflow in response
to the shift-left operation, to carry over the overflow into an
adjacent data element based on a first bitmask obtained from
the third operand, generating a final result, and to store the
final result in a storage location indicated by the first operand.
The first bitmask includes a plurality of bits, each correspond-
ing to one of the data elements, and wherein an overtflow of a
data element is carried over to an adjacent data element only
if a corresponding bit of the first bitmask has a predetermined
logical value. The instruction further includes a fourth oper-
and specifying a second bitmask, wherein the shift operation
is performed on data elements based on the second bitmask.

10

15

20

25

30

35

40

45

50

55

60

65

32

The second bitmask includes a plurality of bits, each corre-
sponding to one of the data elements, and wherein a shift
operation is performed on a data element only if a correspond-
ing bit of the second bitmask has a predetermined logical
value. The shift operation is a shift-left operation. A most
significant bit (MSB) of a data element having an overflow is
carried over to a least significant bit (LSB) of an adjacent data
element. The shift operation is a shift-right operation. A least
significant bit (LSB) of a data element having an overflow is
carried over to a most significant bit (MSB) of an adjacent
data element.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
electronic devices. Such electronic devices store and commu-
nicate (internally and/or with other electronic devices over a
network) code and data using computer-readable media, such
as non-transitory computer-readable storage media (e.g.,
magnetic disks; optical disks; random access memory; read
only memory; flash memory devices; phase-change memory)
and transitory computer-readable transmission media (e.g.,
electrical, optical, acoustical or other form of propagated
signals—such as carrier waves, infrared signals, digital sig-
nals).

The processes or methods depicted in the preceding figures
may be performed by processing logic that comprises hard-
ware (e.g. circuitry, dedicated logic, etc.), firmware, software
(e.g., embodied on a non-transitory computer readable
medium), ora combination of both. Although the processes or
methods are described above in terms of some sequential
operations, it should be appreciated that some of the opera-
tions described may be performed in a different order. More-
over, some operations may be performed in parallel rather
than sequentially.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary
embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
following claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense.

US 9,152,419 B2

33

What is claimed is:
1. A processor, comprising:
an instruction decoder to receive an instruction having a
first operand, a second operand, and a third operand; and

an execution unit coupled to the instruction decoder to
execute the instruction, the execution unit to individu-
ally perform a shift operation by at least one bit for each
ofaplurality of data elements stored in a storage location
indicated by the second operand, for each of the data
elements that has an overflow in response to the shift-left
operation, to carry over the overflow into an adjacent
data element based on a first bitmask obtained from the
third operand, generating a final result, and to store the
final result in a storage location indicated by the first
operand.
2. The processor of claim 1, wherein the first bitmask
includes a plurality of bits, each corresponding to one of the
data elements, and wherein an overflow of a data element is
carried over to an adjacent data element only if a correspond-
ing bit of the first bitmask has a predetermined logical value.
3. The processor of claim 1, wherein the instruction further
includes a fourth operand specifying a second bitmask,
wherein the shift operation is performed on data elements
based on the second bitmask.
4. The processor of claim 3, wherein the second bitmask
includes a plurality of bits, each corresponding to one of the
data elements, and wherein a shift operation is performed on
a data element only if a corresponding bit of the second
bitmask has a predetermined logical value.
5. The processor of claim 1, wherein the shift operation is
a shift-left operation.
6. The processor of claim 5, wherein at least one most
significant bit (MSB) of a data element having an overflow is
carried over to at least one least significant bit (LSB) of an
adjacent data element.
7. The processor of claim 1, wherein the shift operation is
a shift-right operation.
8. The processor of claim 7, wherein at least one least
significant bit (LSB) of a data element having an overflow is
carried over to at least one most significant bit (MSB) of an
adjacent data element.
9. A method, comprising:
receiving, at an instruction decoder of a processor, an
instruction having a first operand, a second operand, and
a third operand; and

executing, by an execution unit of the processor, the
instruction to individually perform a shift operation by at
least one bit for each of a plurality of data elements
stored in a storage location indicated by the second
operand, for each of the data elements that has an over-
flow in response to the shift-left operation, to carry over
the overflow into an adjacent data element based on a
first bitmask obtained from the third operand, generating
a final result, and to store the final result in a storage
location indicated by the first operand.

10. The method of claim 9, wherein the first bitmask
includes a plurality of bits, each corresponding to one of the
data elements, and wherein an overflow of a data element is
carried over to an adjacent data element only if a correspond-
ing bit of the first bitmask has a predetermined logical value.

11. The method of claim 9, wherein the instruction further
includes a fourth operand specifying a second bitmask,
wherein the shift operation is performed on data elements
based on the second bitmask.

10

15

20

25

30

35

40

45

50

55

60

34

12. The method of claim 11, wherein the second bitmask
includes a plurality of bits, each corresponding to one of the
data elements, and wherein a shift operation is performed on
a data element only if a corresponding bit of the second
bitmask has a predetermined logical value.

13. The method of claim 9, wherein the shift operation is a
shift-left operation.

14. The method of claim 13, wherein at least one most
significant bit (MSB) of a data element having an overflow is
carried over to at least one least significant bit (LSB) of an
adjacent data element.

15. The method of claim 9, wherein the shift operation is a
shift-right operation.

16. The method of claim 15, wherein at least one least
significant bit (LSB) of a data element having an overflow is
carried over to at least one most significant bit (MSB) of an
adjacent data element.

17. A system, comprising:

an interconnect;

a dynamic random access memory (DRAM) coupled to the

interconnect; and

a processor coupled the interconnect, including

an instruction decoder to receive an instruction having a
first operand, a second operand, and a third operand,
and

an execution unit coupled to the instruction decoder to
execute the instruction, the execution unit to individu-
ally perform a shift operation by at least one bit for
each of a plurality of data elements stored in a storage
location indicated by the second operand, for each of
the data elements that has an overflow in response to
the shift-left operation, to carry over the overtlow into
an adjacent data element based on a first bitmask
obtained from the third operand, generating a final
result, and to store the final result in a storage location
indicated by the first operand.

18. The system of claim 17, wherein the first bitmask
includes a plurality of bits, each corresponding to one of the
data elements, and wherein an overflow of a data element is
carried over to an adjacent data element only ifa correspond-
ing bit of the first bitmask has a predetermined logical value.

19. The system of claim 17, wherein the instruction further
includes a fourth operand specifying a second bitmask,
wherein the shift operation is performed on data elements
based on the second bitmask.

20. The system of claim 19, wherein the second bitmask
includes a plurality of bits, each corresponding to one of the
data elements, and wherein a shift operation is performed on
a data element only if a corresponding bit of the second
bitmask has a predetermined logical value.

21. The system of claim 17, wherein the shift operation is
a shift-left operation.

22. The system of claim 21, wherein at least one most
significant bit (MSB) of a data element having an overflow is
carried over to at least one least significant bit (LSB) of an
adjacent data element.

23. The system of claim 17, wherein the shift operation is
a shift-right operation.

24. The system of claim 23, wherein at least one least
significant bit (LSB) of a data element having an overflow is
carried over to at least one most significant bit (MSB) of an
adjacent data element.

#* #* #* #* #*

